b

T T 4

borne/McGraw-Hill

)

UL . N
 ASSEMBLY LANGUAGE
- SUBROUTINES

-

Lance A. Leventhal
Winthrop Saville

280°
Assembly Language
Subroutines

280
Assembly Language
Subroutines

Lance A. Leventhdl
Winthrop Sawille

Osborne/McGraw-Hill
Berkeley, California

Disclaimer of Warranties and Limitation of Liabilities

The authors have taken due care in preparing this book and the programs in it,
including research, development, and testing to ascertain their effectiveness. The
authors and the publisher make no expressed or implied warranty of any kind with
regard to these programs or the supplementary documentation in this book. In no
event shall the authors or the publisher be liable for incidental or consequential
damages in connection with or arising out of the furnishing, performance, or use of
any of these programs.

7380 is a registered trademark of Zilog, Inc.

ZID and ZSID are trademarks of Digital Research Corp.
ED is a product of Digital Research Corp.

IBM is a registered trademark of IBM.

Teletype is a registered trademark of Teletype Corp.

Published by
Osborne/McGraw-Hill
2600 Tenth Street
Berkeley, California 94710
U.S.A.

For information on translations and book distributors outside of the U.S.A., please write to Osborne/
McGraw-Hill at the above address.

780° ASSEMBLY LANGUAGE SUBROUTINES

Copyright ©1983 by McGraw-Hill, Inc. All rights reserved. Printed in the United States of America.
Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or
distributed in any form or by any means, or stored in a data base or retrieval system, without the prior
written permission of the publisher, with the exception that the program listings may be entered, stored,
and executed in a computer system, but they may not be reproduced for publication.

234567890 DODO 8987654
ISBN 0-931988-91-8
Cover by Jean Lake
Text design by Paul Butzler

Contents

WON —

O 23T 0®0~w0o O

Preface vii

General Programming Methods 1

Implementing Additional Instructions and Addressing Modes
Common Programming Errors 139

Introduction to the Program Section 161

Code Conversion 167

Array Manipulation and Indexing 195

Arithmetic 217

Bit Manipulation and Shifts 267

String Manipulation 288

Array Operations 319

Input/Output 356

Interrupts 394

Z.80 Instruction Set Summary 433

Programming Reference for the Z80 PIO Device 457
ASCII Character Set 463

Glossary 465

Index 489

71

Preface

T his book is intended to serve as a source and a reference for the assembly language
programmer. It contains an overview of assembly language programming for a partic-
ular microprocessor and a collection of useful subroutines. In the subroutines, a
standard format, documentation package, and parameter passing techniques were
used. The rules of the most popular assemblers have been followed, and the purpose,
procedure, parameters, results, execution time, and memory usage of each routine
have been described.

The overview sections summarize assembly language programming for those who
do not have the time or need for a complete textbook; the Assembly Language
Programming series provides more extensive discussions. Chapter 1 introduces
assembly language programming for the particular processor and summarizes the
major features that make this processor different from other microprocessors and
minicomputers. Chapter 2 shows how to implement instructions and addressing
modes that are not explicitly available. Chapter 3 describes common programming
errors.

The collection of subroutines emphasizes common tasks that occur in many applica-
tions. These tasks include code conversion, array manipulation, arithmetic, bit
manipulation, shifting functions, string manipulation, sorting, and searching. We
have also provided examples of I/ O routines, interrupt service routines, and initializa-
tion routines for common family chips such as parallel interfaces, serial interfaces, and
timers. You should be able to use these programs as subroutines in actual applications
and as starting points for more complex programs.

This book is intended for the person who wants to use assembly language imme-
diately, rather than just learn about it. The reader could be

- An engineer, technician, or programmer who must write assembly language
programs for a design project.

- A microcomputer user who wants to write an I/ O driver, a diagnostic program, a
utility, or a systems program in assembly language.

vii

Vill 780 ASSEMBLY LANGUAGE SUBROUTINES

* An experienced assembly language programmer who needs a quick review of
techniques for a particular microprocessor.

* A systems designer who needs a specific routine or technique for immediate use.

* A high-level language programmer who must debug or optimize programs at the
assembly level or must link a program written in a high-level language to one
written in assembly language.

* A maintenance programmer who must understand quickly how specific assembly
language programs work.

* A microcomputer owner who wants to understand the operating system for a
particular computer or who wants to modify standard 1/O routines or systems
programs.

- A student, hobbyist, or teacher who wants to see examples of working assembly
language programs.

This book can also serve as a supplement for students of the Assembly Language
Programming series.

This book should save the reader time and effort. The reader should not have to
write, debug, test, or optimize standard routines or search through a textbook for
particular examples. The reader should instead be able to obtain easily the specific
information, technique, or routine that he or she needs. This book has been organized
and indexed for rapid use and reference.

Obviously, a book with such an aim demands feedback from its readers. Although
all the programs have been thoroughly tested and carefully documented, please inform.
the publisher if you find any errors. If you have suggestions for better methods or for
additional topics, routines, programming hints, or index entries, please tell us about
them. We have used our programming experience to develop this book, but your help
1s needed to improve it. We would greatly appreciate your comments, criticisms, and
suggestions.

NOMENCLATURE

We have used the following nomenclature in this book to describe the architecture of
the Z80 processor, to specify operands, and to represent general values of numbers and
addresses.

PREFACE X

280 Architecture

Byte-length registers include

A (accumulator) R (refresh)
B A’
C B’
D C
E D’
H E’
L H’
F (flags) L
I (interrupt vector) F

Of these, the primary user registers are the first seven: A, B, C, D, E, H, and L. The I
(interrupt vector) register contains the more significant byte (page number) of inter-
rupt service addresses in Interrupt Mode 2. The R (refresh) register contains a memory
refresh counter. The F (flag) register consists of a set of bits with independent functions
and meanings, organized as shown in the following diagram:

7 6 5 4 3 2 1| 0 -e——BitNumber
BEERRENE
b 4 44 [

Processor Status Register F

Carry
Add/Subtract
‘- Parity/ Overflow
Not Used (Logic 1)
Auxiliary Carry
Not Used (Logic 1)
Zero

Sign

Register pairs and word-length registers include

AF (Accumulator and flags, accumulator most significant)
AF" (Registers A’ and F’, A’ most significant)
BC (Registers B and C, B most significant)
BC" (Registers B’ and C’, B’ most significant)
DE (Registers D and E, D most significant)
DE" (Registers D’ and E’, D" most significant)
HL (Registers H and L, H most significant)
HL" (Registers H and L', H’ most significant)
IX (Index register X or 1X)

Y (Index register Y or 1Y)

PC (Program counter)

SP (Stack pointer)

Flags include

Add/Subtract (N)
Carry (C)
Auxiliary Carry (Ac)

X 780 ASSEMBLY LANGUAGE SUBROUTINES

Parity/ Overflow (P/O or P/ V)
Sign (S)
Zero (Z)

These flags are arranged in the F register as shown previously.

Miscellaneous facilities include

Interrupt Flip-flop 1 (IFF1)
Interrupt Flip-flop 2 (IFF2)

280 Assembiler

Delimiters include

: After a label, except for EQU, DEFL, and MACRO, which require a space
space After an operation code

s Between operands in the operand (address) field

H Before a comment

() Around memory references

All operands are treated as data unless they are enclosed in parentheses.

Pseudo-Operations include

DB or DEFB Define byte; place byte-length data in
memory.

DEFL Define label (may be redefined later).

DEFM Define string; place ASCII data in memory.

DS or DEFS Define storage; allocate bytes of memory.

DW or DEFW Define word; place word-length data in
memory.

END End of program.

EQU Equate; define the attached label.

ORG Set origin; place subsequent object code

starting at the specified address.

Designations include

Number systems:

B (suffix) Binary

D (suffix) Decimal

H (suffix) Hexadecimal
Q (suffix) Octal

The default mode is decimal; hexadecimal numbers must start with a digit (you must
add a leading zero if the number starts with a letter).

Others:

‘o

or “ "ASCII (characters surrounded by single or double quotation marks)
$ Current value of location (program) counter

PREFACE

General Nomenclature

ADDR
ADDRI1
ADDR2
BASE
BICON
CONST
DEST

HIGH
INDIR

LOW
MASK
n

NPARAM
NEXT
NRESLT
NTIMES
NTIML
NTIMM
NUM
NUMI
NUM2
OFF
OFFSET
oper

OPER
OPER1
OPER2
reg
regl
RETPT
p

rph

rpl

rpl
rplh
rpll
rp2
rp2h
rp2l
SPTR
STRNG
SUM
TEMP
VALI16
VALI6H
VALI6L
VALUE

Xy

A 16-bit address in data memory

A 16-bit address in data memory

A 16-bit address in data memory

A constant 16-bit address in data memory

An 8-bit data item in binary format

A constant 8-bit data item

A 16-bit address in program memory, the
destination for a jump instruction

A 16-bit data item

A 16-bit address in data memory, the start-
ing address for an indirect address. The
indirect address is stored in memory
locations INDIR and INDIR+1.

A 16-bit data item

An 8-bit number used for masking

A bit position in a byte; possible values are
0 through 7

A 16-bit data item

A 16-bit address in program memory

A 16-bit data item

An 8-bit data item

An 8-bit data item

An 8-bit data item

A 16-bit data item

A 16-bit address in data memory

A 16-bit address in data memory

An 8-bit fixed offset

An 8-bit fixed offset

An 8-bit data item, a register, (HL), or an
indexed address

A 16-bit address in data memory

A 16-bit address in data memory

A 16-bit address in data memory

A primary user register (A, B, C, D, E, H, or L)

A primary user register

A 16-bit address in program memory

A primary register pair (BC, DE, or HL)

The more significant byte of rp

The less significant byte of rp

A primary register pair

The more significant byte of rpl

The less significant byte of rpl

Another primary register pair, not the same as rp1

The more significant byte of rp2

The less significant byte of rp2

A 16-bit address in data memory

A 16-bit address in data memory

A 16-bit address in data memory

A 16-bit address in data memory

A 16-bit data item

The more significant byte of VAL16

The less significant byte of VALI16

An 8-bit data item

An index register, either I1X or IY

Xi

Chapter 1 General
Programming Methods

Some general methods for writing assembly language programs for the Z80 micro-
processor are presented in this chapter. In addition, techniques for performing the
following operations are explained:

- Loading and saving registers

+ Storing data in memory

+ Arithmetic and logical functions

- Bit manipulation and testing

+ Testing for specific values

* Numerical comparisons

- Looping (repeating sequences of operations)
+ Array processing and manipulation
- Table lookup

+ Character code manipulation

+ Code conversion

- Multiple-precision arithmetic

+ Multiplication and division

+ List processing

* Processing of data structures.

Also included in this chapter are special sections that describe passing parameters to
subroutines, general methods for writing 1/ O drivers and interrupt service routines,
and ways of making programs run faster or use less memory.

The operations described are required in such applications as instrumentation, test
equipment, computer peripherals, communications equipment, industrial control,
process control, business equipment, aerospace and military systems, and consumer
products. Microcomputer users will employ these operations in writing I/ O drivers,
utility programs, diagnostics, and systems software, and in understanding, debugging,
and improving programs written in high-level languages. This chapter provides a brief

1

2 780 ASSEMBLY LANGUAGE SUBROUTINES

guide to Z80 assembly language programming for those who have an immediate
application in mind.

SUMMARY FOR EXPERIENCED PROGRAMMERS

For those who are familiar with assembly language programming on other comput-
ers, we provide here a brief review of the peculiarities of the Z80. Being aware of these
unusual features can save a lot of time and trouble.

1. Arithmetic and logical operations are allowed only between the accumulator and
a byte of immediate data, the contents of a general-purpose register, the contents of the
address in register pair HL, or the contents of an indexed address. Arithmetic and
logical instructions do not allow direct addressing.

For example, the alternatives for the OR instruction are OR CONST, where CONST
is a fixed data byte; OR reg, where reg is an 8-bit general-purpose register; OR (HL);
and OR (xy+OFF). The third alternative logically ORs the accumulator with the data
byte located at the address in HL. The fourth alternative logically ORs the accumula-
tor with the data byte located at an indexed address; the processor determines the
address by adding the 8-bit offset OFF to a 16-bit index register.

2. The accumulator and register pair HL are special. The accumulator is the only
byte-length register that can be loaded or stored directly. The accumulator is also the
only register that can be complemented, negated, shifted with a single-byte instruction,
loaded indirectly from the addresses in register pairs BC or DE, stored indirectly at the
addresses in register pairs BC or DE, or used in IN and OUT instructions with direct
addressing.

HL is the only register pair that can serve as an indirect address in arithmetic or logi-
calinstructions or in loading or storing registers other than the accumulator. HL is also
the only register pair that can be transferred to the program counter or stack pointer.
Furthermore, HL serves as a double-length accumulator in 16-bit addition and sub-
traction. Register pair DE is also special because the instruction EX DE,HL can
exchange it with HL. Thus, the Z80’s registers are highly asymmetric, and the pro-
grammer must carefully choose which data and addresses go in which registers.

3. There are often several names for the same physical register. The registers A, B,
C, D, E, H, and L are all available as 8-bit registers. The register pairs BC (B more
significant), DE (D more significant), and HL (H more significant) are also available
as 16-bit register pairs in many instructions. The terms “register pair B,” “registers B
and C,” and “register pair BC” all have the same meaning, and there are similar
variations for registers D and E and H and L. Note that the register pair and the two
single registers are physically identical and cannot be used for different purposes at the
same time.

CHAPTER 1 GENERAL PROGRAMMING METHODS 3

In fact, H and L are almost always used to hold an indirect address because of the
availability of instructions that access the data at that address as well as special
instructions like LD SP,HL; JP (HL); EX (SP),HL; and EX DE,HL. Register pair DE
is used for a second address when one is needed because of the EX DE,HL instruction.
Registers B and C are generally used as separate 8-bit registers for temporary data
storage and counters.

4. Theeffects of instructions on flags are extremely inconsistent. Some particularly
unusual effects are (a) logical instructions clear the Carry, (b) one-byte accumulator
rotate instructions affect no flags other than the Carry, (c) load, store, transfer,
increment register pair or index register, and decrement register pair or index register
instructions affect no flags at all, and (d) 16-bit addition (ADD HL or ADD xy) affects
only the Carry flag. Table A-1 in Appendix A can be used as an aid in determining how
an instruction affects the flags.

5. There is no indirect addressing through memory locations. The lack of indirect
addressing is overcome by loading the indirect address into register pair HL. Thus,
indirect addressing is a two-step process. The indirect address can also be loaded into
registers pair BC or DE, but it can then only be used to load or store the accumulator.

6. The Z80’s indexing allows only an 8-bit fixed offset in the instruction. Its main
purpose is to implement postindexing dand to allow offsets in data structures. A more
general form of indexed addressing requires an explicit 16-bit addition of register pairs
using HL as a 16-bit accumulator. Thus, indexing usually requires several steps: The
index must be loaded into one register pair, the base address must be loaded into
another register pair (one pair must be HL), the two must be added explicitly (using
ADD HL,rp), and the sum must be used as an indirect address (by referring to (HL)).
Generalized indexing on the Z80 is a long, awkward process.

7. There is a combined Parity/ Overflow indicator. This flag indicates even parity
after all instructions that affect it except addition and subtraction. Then it indicates the
occurrence of two’s complement overflow.

8. Many common instructions are missing but can easily be simulated with register
operations. Some examples are clearing the accumulator (use SUB A or XOR A),
clearing the Carry flag (use AND A or OR A), and logically shifting the accumulator
left (use ADD A,A). Either AND A or OR A clears the Carry flag and sets the other
flags according to the contents of the accumulator. But remember, loading a register
does not affect any flags.

9. There are both relative and absolute branches (using the operation codes JR and
JP, respectively). Both addressing methods are allowed for unconditional branches.
The sets of conditional branches differ; relative branches exist only for the Carry and
Zero flags, whereas absolute branches exist for the Carry, Sign, Parity/ Overflow, and
Zero flags. What is interesting here is that the relative branches occupy less memory

4 730 ASSEMBLY LANGUAGE SUBROUTINES

than the corresponding absolute branches (2 bytes rather than 3) but execute more
slowly if the branch is taken (12 cycles rather than 10).

10. Increment and decrement instructions behave differently, depending on whether
they are applied to 8-bit or 16-bit operands. Decrementing or incrementing an 8-bit
register affects all flags except the Carry. Decrementing or incrementing a 16-bit
register pair or index register does not affect any flags at all. A 16-bit register pair can
be used as a counter, but the only way to test the pair for zero is to logically OR the two
bytes together in the accumulator. The 16-bit instructions are intended primarily for
address calculations, not for data manipulation.

11. Instructions that are additions to the original 8080 instruction set occupy more
memory and execute more slowly than other instructions with similar functions and
addressing modes. Among them are bit manipulation, arithmetic shift, logical shift,
shifts of registers other than the accumulator, and some loads. These instructions
execute more slowly because they require a prefix byte that tells the processor the
instruction is not an original 8080 instruction and the next byte is the real operation
code. Weller makes it easier to recognize the secondary instructions by using mnemon-
ics derived from the 8080 instruction set.!

12. Certain registers and facilities are clearly secondary in importance. The pro-
grammer should employ them only when the primary registers and facilities are
already in use or too inconvenient to use. The secondary facilities, like the secondary
instructions, represent additions to the underlying 8080 microprocessor. The most
important additions are index registers IX and IY; many instructions use these
registers, but they take more memory and much more time than instructions that use
the other register pairs. Another addition is the primed register set. Only two instruc-
tions (EX 'AF,AF’ and EXX) allow access to the primed set, and for this reason
programmers generally reserve it for functions such as fast interrupt response.

13. Operations that can be done directly to a general-purpose register are shift it,
transfer it to or from another register, load it with a constant, increment it by 1, or
decrement it by 1. These operations can also be performed indirectly on the memory
address in HL or on a memory location addressed via indexing.

14. Only register pairs or index registers can be moved to or from the stack. One
pair is AF, which consists of the accumulator (more significant byte) and the flags (less
significant byte). The CALL and RET instructions transfer addresses to or from the
stack; there are conditional calls and returns but they are seldom used.

15. The Z80 has a readable interrupt enable flag. One can determine its value by
executing LD AT or LD A,R. Either instruction moves the Interrupt flip-flop to the
Parity/Overflow flag. That flag then reflects the state of the interrupt system at a
particular time, and thus can be used to restore the state after the processor executes
code that must run with interrupts disabled.

CHAPTER 1 GENERAL PROGRAMMING METHODS 5

16. The Z80 uses the following common conventions:

- The 16-bit addresses are stored with the less significant byte first (that is, at the
lower address). The order of the bytes in an address is the same as in the 8080, 8085, and
6502 microprocessors, but the opposite of that used in the 6800 and 6809.

- The stack pointer contains the lowest address actually occupied by the stack. This
convention is also used in the 8080, 8085, and 6809 microprocessors, but the obvious
alternative (next available address) is used in the 6502 and 6800. Z80 instructions store
data in the stack using predecrementing (they subtract 1 from the stack pointer before
storing a byte) and load data from the stack using postincrementing (they add 1 to the
stack pointer after loading a byte).

- The interrupt (enable) flag is | to allow interrupts and 0 to disallow them. This
convention is the same as in the 8080 and 8085, but the opposite of that used in the
6502, 6800, and 6809.

REGISTER SET

Z80 assembly language programming is complicated by the asymmetry of the
processor’s instruction set. Many instructions apply only to particular registers,
register pairs, or sets of registers. Almost every register has its own unique features,
and almost every instruction has its own peculiarities. Table 1-1 lists the 8-bit registers
and the instructions that use them. Table 1-2 lists the 16-bit registers and the instruc-
tions that use them (of course, all instructions change the program counter implicitly).
Table 1-3 lists the indirect addresses contained in on-board register pairs and the
instructions that use them. Table 1-4 lists the instructions that apply only to the
accumulator, and Table -5 lists the instructions that apply only to particular 16-bit
registers. Table 1-6 lists the instructions that apply to the stack.

The general uses of the registers are as follows:

- The accumulator, the center of data processing, is the source of one operand and
destination of the result for most arithmetic, logical, and other processing operations.

- Register pair HL is the primary memory address register. Instructions can often
refer to the data at the address in HL, that is, (HL).

- Register pair DE is the secondary memory address register because the pro-
grammer can exchange its contents with HL using EX DE,HL.

- Registers Band C (register pair BC) are general-purpose registers used mainly for
counters and temporary data storage. Register B is often used as a loop counter
because of its special usage in the DJNZ instruction.

- Index registers IX and IY are used when the programmer is referring to memory
addresses by means of fixed offsets from a variable base. These registers also serve as
backups to HL when that register pair is occupied.

6 750 AssEnBLY LANGUAGE SUBROUTINES

Table 1-1. Eight-Bit Registers and Applicable Instructions

8-Bit Register

Instructions

A only

A,B,.C,D,E.H,L

B only
C only

F (flags)
I (interrupt vector)
R (refresh)

CPL, DAA; IN A (port); LD (ADDR),LD (BC or DE), NEG;
OUT (port),A; RLA, RLCA, RLD, RRA, RRCA, RRD.

ADC A; ADD A; AND, CP, DEG; IN reg,(C); INC, LD, OR;
OUT (C),reg; RL, RLC, RR, RRC, SBC A; SLA, SRA,
SRL, SUB, XOR

DJNZ, IND, INDR, INI, INIR, OTDR, OTIR, OUTD, OUTI

IN reg,(C); OUT (C),reg; IND, INDR, INI, INIR, OTDR,
OTIR, OUTD, OUTI

CCF, SCF (see also AF register pair)
LD LA;LD Al
LD R,A; LD AR

Table 1-2. Sixteen-Bit Registers and Applicable Instructions

16-Bit Register

Instructions

AF
AF
BC

BC’
DE

DE’
HL

HL’

IX

1Y

Program Counter

Stack Pointer

POP; PUSH; EX AFAF’
EX AEAF

ADC HL, ADD xy, ADD HL, CPD, CPDR, CPI, CPIR,
DEC, EXX, INC, LD, LDD, LDDR, LDI, LDIR, POP,
PUSH, SBC HL

EXX

ADC HL, ADD xy, ADD HL, DEC; EX DE,HL; EXX, INC,
LD, LDD, LDDR, LDI, LDIR, POP, PUSH, SBC HL

EXX

ADC HL, ADD HL, CPD, CPDR, CPI, CPIR, DEC; EX
DE,HL; EX (SP),HL; EXX, INC, IND, INDR, INI, INIR,
LD, LDD, LDDR, LDI, LDIR, OTDR, OTIR, OUTD,
OUTI, POP, PUSH, SBC HL

EXX
ADD IX, LD, POP, PUSH; EX (SP),IX
ADD 1Y, LD, POP, PUSH; EX (SP),1Y
CALL instructions, JP, JR, RETURN instructions, RETI,
RETN, RST
CALL instructions, ADD HL, DEC, INC, LD, POP, PUSH,
RETURN instructions, RST

CHAPTER 1 GENERAL PROGRAMMING METHODS

Table 1-3. Indirect Addresses and Applicable Instructions

Location of Address

Instructions

Register pair BC
Register pair DE
Register pair HL*

Stack Pointer

Index register
XorY

LD A,(BC); LD (BC),A
LD A,(DE); LD (DE),A

ADC A; ADD A; AND, CP, DEC, INC, JP, LD, OR, SBC
A; SUB, XOR

CALL instructions, POP, PUSH, RETURN instructions,
RST

JP

* Index register X or Y can also be used as an indirect address for the same instructions as HL by
specifying indexed addressing with a fixed offset of zero.

Table 1-4. Instructions That Apply Only to the Accumulator

IN A,(port)
LD A,(ADDR)
LD A,(rp)
NEG

OR

OUT (port),A
RLA

RLCA

RRA

RRCA

SBC A

SUB

XOR

Instruction Function
ADC A Add with carry
ADD A Add
AND Logical AND immediate
CPL One’s complement
Ccp Compare
DAA Decimal adjust (decimal correction)

Input direct

Load direct

Load indirect

Two’s complement (negate)

Logical OR

Output direct

Rotate accumulator left through carry
Rotate accumulator left

Rotate accumulator right through carry
Rotate accumulator right

Subtract with borrow

Subtract

Logical EXCLUSIVE OR

8 780AssEMBLY LANGUAGE SUBROUTINES

Table 4-5. Instructions That Apply Only to One or Two 16-Bit Registers

Instruction 16-Bit Registers Function

EX AFAF’ AFEAF Exchange program status with alternate
program status

EX DE,HL DE,HL Exchange HL with DE

EX (SP),HL HL Exchange HL with top of stack

EX (SP),xy IXorlY Exchange index register with top of stack

LD SPHL HL,SP Load stack pointer from HL

LD SPxy IX or 1Y,SP Load stack pointer from index register

Table 4-6. Instructions That Use the Stack

Instruction Function

Call instructions Jump and save program counter in stack (including
conditionals)

EX (SP),HL Exchange HL with top of stack

EX (SP),xy Exchange index register with top of stack

POP Load register pair from stack

PUSH Store register pair in stack

RETURN instructions Looad program counter from stack (including
conditionals)

RST Jump to vector address and save program
counter in stack

We may describe the special features of particular registers as follows:

* Accumulator. Only single register that can be loaded or stored directly. Only 8-bit
register that can be shifted with a one-byte instruction. Only register that can be
complemented, decimal adjusted, or negated with a single instruction. Only register
that can be loaded or stored using the addresses in register pairs BC or DE. Only
register that can be stored in an output port or loaded from an input port using direct
addressing. Source and destination for all 8-bit arithmetic and logical instructions
except DEC and INC. Only register that can be transferred to or from the interrupt
vector (I) or refresh (R) register.

* Register pair HL. Only register pair that can be used indirectly in the instructions
ADC, ADD, AND, CMP, DEC, INC, OR, SBC, SUB, and XOR. Source and
destination for the instructions ADC HL, ADD HL, and SBC HL. Only register pair

CHAPTER 1 GENERAL PROGRAMMING METHODS 9

that can be exchanged with register pair DE or with the top of the stack. Only register
pair that can have its contents moved to the stack pointer (LD SP,HL) or the program
counter (JP (HL)). Only register pair that can be shifted with a single instruction
(ADD HL,HL). Automatically used as a source address register in block move, block
compare, and block output instructions. Automatically used as a destination address
register in block input instructions.

- Register pair DE. Only register pair that can exchanged with HL (EX DE,HL).
Automatically used as a destination address register in block move instructions.

- Register pair BC. Automatically used as a counter in block move and block
compare instructions.

- Register B. Automatically used as a counter in the DJNZ instruction and in block
input and output instructions.

- Register C. Only register that can be used as an indirect port address for input and
output. Automatically used as a port address in block input and output instructions.

- Index registers IX and IY. Only address registers that allow an indexed offset.
Used as source and destination in ADD xy instruction. Can be exchanged with the top
of the stack, moved to the stack pointer or program counter, or shifted with ADD
XY,XY.

- Stack pointer. Automatically postincremented by instructions that load data from
the stack and predecremented by instructions that store data in the stack. Only address
register that can be used to transfer other register pairs to or from memory (PUSH and

POP) or to transfer the program counter to or from memory (CALL instructions and
RETURN instructions).

Note the following:

- The A register is the only 8-bit register that can be loaded from memory or stored
in memory using direct addressing.

- Only the address in register pair HL or an address obtained via indexing can be
used in operations other than loading and storing the accumulator. That is, only the
data at the address in HL or at an indexed address can be moved to or from a user
register, decremented, incremented, or used in arithmetic and logical operations.

- Only DEC reg and INC reg perform 8-bit arithmetic operations without involving
the accumulator (of course, DEC and INC may be applied to the accumulator).

+ Only index registers IX and ['Y allow an offset from a base address. The data at the
indexed address can be used like the data at the address in HL.

- The index registers IX and IY make useful backups to HL because of the
availability of the 16-bit instructions ADD xy; EX (SP),xy; JP (xy); and LD SPxy.

40 750 ASSEMBLY LANGUAGE SUBROUTINES

Register Transfers

The LD instruction can transfer any 8-bit general-purpose register (A, B, C, D, E, H,
or L) to any other 8-bit general-purpose register. The flag (F) register can only be
transferred to or from the stack along with the accumulator (PUSH AF and POP AF).
Register pairs DE and HL can be exchanged using EX DE,HL.

The common transfer instructions are

+ LD A reg transfers the contents of reg to the accumulator

- LD reg,A transfers the contents of the accumulator to reg

- LDreg,(HL) loads reg with the contents of the memory address in register pair HL
* LD (HL),reg stores reg at the memory address in register pair HL

- EX DE,HL exchanges register pair DE with HL.

The destination always comes first in the operand field of LD. That is, LD regl,reg2
transfers the contents of reg2 to regl, the opposite of the convention proposed in IEEE
Standard 694 for assembly language instructions.? The LD changes the destination,
but leaves the source as it was. Note that EX DE, HL changes all four registers (D, E,
H, and L); it is thus equivalent to four L Ds plus some intermediate steps that save one
byte of data while transferring another.

LOADING REGISTERS FROM MEMORY

The Z80 microprocessor has five addressing modes that can be used to load registers
from memory. These addressing modes are: Direct (from a specific memory address),
Immediate (with a specific value), Indirect (from an address stored in a register pair),
Indexed (from an address obtained by adding a fixed offset to an index register), and
Stack (from the top of the stack).?

Direct Loading of Registers

The accumulator, a primary register pair (BC, DE, or HL), the stack pointer, or an
index register can be loaded from memory using direct addressing.

Examples
1. LD A,(2050H)

This instruction loads the accumulator (register A) from memory location 2050 6.

CHAPTER 1 GENERAL PROGRAMMING METHODS 44

2. LD HL,(0A000H)

This instruction loads register L from memory location A000 s and register H from
memory location. A001 ¢ Note the standard Z80 practice of storing 16-bit numbers
with the less significant byte at the lower address, followed by the more significant byte.

3. LD SP,(9AI2H)

This instruction loads the stack pointer from memory locations 9A12 6 (less signifi-
cant byte) and 9A13 | (more significant byte).

Immediate Loading of Registers

Immediate addressing can be used to load any register, register pair, or index register
with a specific value. The register pairs include the stack pointer.

Examples
1. LD C,6

This instruction loads register C with the number 6. The 6 is an 8-bit data item, nota
16-bit address. Do not confuse the number 6 with the address 0006 6.

2. LD DE,ISE3H
This instruction loads register D with 154 and register E with E3¢.

3. LD IY,0B7EEH
This instruction loads index register IY with B7TEE 6.

Indirect Loading of Registers

The instruction LD reg,(HL) can load any register from the address in register pair
HL. The instruction LD A ,(rp) can load the accumulator using the address in a register
pair (BC, DE, or HL). Note that there is no instruction that loads a register pair
indirectly.

Examples

1. LD D,(HL)

This instruction loads register D from the memory address in register pair HL. The
assembly language instruction takes the form “LD destination register, source regis-
ter”; the order of the operands is the opposite of that proposed for IEEE Standard
694.4

12 780 ASSEMBLY LANGUAGE SUBROUTINES

2. LD A,(BC)

This instruction loads the accumulator from the memory address in register pair
BC. Note that you cannot load any register except A using BC or DE indirectly.

Indexed Loading of Registers

The instruction LD A,(xy+OFFSET) loads the accumulator from the indexed
address obtained by adding the 8-bit number OFFSET to the contents of an index
register. Note that OFFSET is a fixed 8-bit number (its value is part of the program),
while the index register contains a 16-bit address that can be changed.s If OFFSET =0,
indexing is equivalent to indirection, but it is slower since the processor still must
perform the address addition.

Stack Loading of Registers

The instruction POP rp or POP xy loads a register pair or an index register from the
top of the stack and adjusts the stack pointer appropriately. One register pair for POP
rp is AF, which consists of the accumulator (more significant byte) and the flags (less
significant byte). No instructions load 8-bit registers from the stack or use the stack
pointer indirectly without changing it (although EX (SP),HL and EX (SP),xy have no
net effect on the stack pointer since they transfer data both to and from the stack).

Examples

1. POP DE

This instruction loads register pair DE from the top of the stack and increments the
stack pointer by 2. Register E is loaded first.

2. POPIY

This instruction loads index register IY from the top of the stack and increments the
stack pointer by 2. The less significant byte of IY is loaded first.
The stack has the following special features:

+ The stack pointer contains the address of the most recently occupied location.
The stack can be anywhere in memory.

+ Datais stored in the stack using predecrementing—the instructions decrement
the stack pointer by 1 before storing each byte. Data is loaded from the stack using
postincrementing—the instructions increment the stack pointer by [after loading
each byte.

- As is typical with microprocessors, there are no overflow or underflow
indicators.

CHAPTER 1 GENERAL PROGRAMMING METHODS 13

STORING REGISTERS IN MEMORY

The Z80 has four addressing modes that can be used to store registers in memory.
These modes are: Direct (at a specific memory address), Indirect (at an address stored
in a register pair), Indexed (at an address calculated by adding an 8-bit offset to the
contents of an index register), and Stack (at the top of the stack).

Direct Storage of Registers

Direct addressing can be used to store the accumulator, a register pair (BC, DE, or
HL), the stack pointer, or an index register.

Examples

1. LD (35C8H),A

This instruction stores the accumulator in memory location 35C8 (6.

2. LD (203AH),HL

This instruction stores register L in memory location 203A ¢ and register H in
memory location 203B .

3. LD (0AS7BH),SP

This instruction stores the stack pointer in memory locations A57B ¢ (less signifi-
cant byte) and AS57C ¢ (more significant byte).

Indirect Storage of Registers

The instruction LD (HL),reg can store any register at the address in register pair
HL. The instruction LD (rp),A can store the accumulator at the address in a register
pair (BC, DE, or HL). Note that there is no instruction that stores a register pair
indirectly.

Examples

1. LD (HL),C

This instruction stores register C at the address in register pair HL. The form is
“move to address in HL from C.”

2. LD (DE),A

This instruction stores the accumulator at the memory address in register pair DE.
Note that you cannot store any register except A using BC or DE indirectly.

44 730 AssevBLY LANGUAGE SUBROUTINES

Indexed Storage of Registers

The instruction LD (xy+OFFSET), A stores the accumulator at the indexed address
obtained by adding the 8-bit number OFFSET to the contents of an index register. If
OFFSET = 0, the indexed address is simply the contents of the index register, and
indexing is reduced to a slow version of indirect addressing.

Stack Storage of Registers

The instruction PUSH rp or PUSH xy stores a register pair or an index register at
the top of the stack and adjusts the stack pointer appropriately. One register pair is AF,
consisting of the accumulator (more significant byte) and the flags (less significant
byte). There is no instruction that stores an 8-bit register in the stack.

Examples
1. PUSH BC

This instruction stores register pair BC at the top of the stack and decrements the
stack pointer by 2. Note that B is stored first, so C ends up at the top of the stack.

2. PUSH IX

This instruction stores index register IX at the top of the stack and decrements the
stack pointer by 2. Note that the less significant byte of IX is stored last, and thus it
ends up at the top of the stack.

OTHER LOADING AND STORING OPERATIONS

Other loading and storing operations require more than one instruction. Some
typical examples are

1. Direct loading of a register other than A.

Lo A, (ADDR)
LD reg, A

An alternative is

Ln HL, ALDR
LD reg, (HL)

The second approach leaves A unchanged, but makes HL an indirect addressing pair.
Of course, the address in HL would then be available for later use.

CHAPTER 1 GENERAL PROGRAMMING METHODS 48

2. Indirect loading of a register (from the address in memory locations INDIR and
INDIR+1).

Ln HL, (INDIR) sGET INDIRECT ADDREZS
Ln reg, (HL) s LOAD DATA INDIRECTLY
3. Direct storage of a register other than A.

LD A,reg
LD CADDR) , A

An alternative is
LD HL, ADDR
Ln (HL) ,reg

4. Indirect storage of a register (at the address in memory locations INDIR and
INDIR+1).

LD HL, CINDIR) GET THE INDIRECT ADDRESS
LD (HL),reg :STORE DATA THERE
STORING VALUES IN RAM

The usual ways to initialize RAM locations are (1) through the accumulator, (2)
using register pair HL directly or indirectly, and (3) using an index register with a fixed
offset.

Examples

1. Store an 8-bit item (VALUE) in address ADDR.

Ln A, VALLE
LD (ADDR) , A

or

LD HL, ADDR
LD (HL), VALLIE

If VALUE = 0, we could use SUB A or XOR A instead of LD A, 0. Note, however,
that SUB A or XOR A affects the flags, whereas LD A,0 does not.

2. Store a 16-bit item (VALI16) in addresses ADDR and ADDR+1 (MSB in
ADDR+1).

LD HL, VAL1&
LD (ADDR) , HL

46 750 ASSEMBLY LANGUAGE SUBROUTINES

3. Store an 8-bit item (VALUE) at the address in memory locations INDIR and
INDIR+1.

Lo HL, (INDIR) ;GET INDIRECT ADDRESS
LD (HL) , VALLE :STORE DATA INDIRECTLY

4. Store an 8-bititem (VALUE) nine bytes beyond the address in memory locations
INDIR and INDIR+I.

Lo A, VALLIE
Lo Xy, (INDIR) ; GET BASE ADDRESS
Lo (Xy+9), A ;STORE DATA @ BYTES BEYOND RAZE

Here the indirect address is the base address of an array or other data structure.

ARITHMETIC AND LOGICAL OPERATIONS

Most arithmetic and logical operations (addition, subtraction, AND, OR, EXCLU-
SIVE OR, and comparison) can be performed only between the accumulator and an
8-bit register, a byte of immediate data, or a byte of data in memory addressed through
register pair HL or via indexing. Note that arithmetic and logical instructions do not
allow direct addressing. If a result is produced (comparison does not produce any), it
replaces the operand in the accumulator.

Examples

1. Logically OR the accumulator with register C.
R C

OR C logically ORs register C with the accumulator and places the result in the
accumulator. The programmer only has to specify one operand; the other operand and
the destination of the result are always the accumulator.

2. Add register B to the accumulator,
ADD A,B

ADD A,B adds register B to the accumulator (register A) and places the result in the
accumulator. In the instructions ADC, ADD, and SBC, the programmer must specify
both operands. The reason is that the Z80 also has the instructions ADC HL (add
register pair to HL with carry), ADD HL (add register pair to HL), ADD xy (add
register pair or index register to index register), and SBC HL (subtract register pair
from HL with borrow). Note the inconsistency here: Both operands must be specified
in ADC, ADD, and SBC, but only one operand in SUB; furthermore, the Z80 has an
ADD xy instruction, but no ADC xy or SBC xy instruction. Since the 16-bit arithmetic
instructions are mainly intended for addressing, we will discuss them later.

CHAPTER 1 GENERAL PROGRAMMING METHODS 47

3. Logically AND the accumulator with the binary constant BICON.

AND

BICON

Immediate addressing is the default mode; no special operation code or designation is
necessary.

4. Logically OR the accumulator with the data at the address in register pair HL.

OR

(HL)

Parentheses indicate a reference to the contents of a memory address.
Other operations require more than one instruction. Some typical examples are:
- Add memory locations OPER I and OPER2, place sum in memory location SUM.

or

or

LD
LD
LD
ADD
LD
LD

A, (OPER1) ;GET FIRST OPERAND
ByA

A, (OPER2) ;GET SECOND OFERAND
A, B

(SUM), A 3 SAVE SUM

HL, OPER1

A, (HL) ;GET FIRST OFERAND
HL , OPER2

A, CHL) ;ADD SECOND OFERAND
HL, SLIM

(HL), A : SAVE SUM

We can shorten the second alternative considerably if the operands and the sum
occupy consecutive memory addresses. For example, if OPER2 = OPERI + 1 and
SUM = OPER2 + 1, we have

Lo
LI
INC
ADD
INC
LD

HL, OPER1

A, (HL) ;GET FIRST QOPERAND
HL

A, (HL) ; ADD SECOND QFERAND
HL

(HL)Y, A s SAVE SUM

- Add a constant (VALUE) to memory location OPER.

L0
ADD
LD

LD
LD
ADD
LD

A, (OPER)
A, VALLIE
(QFER), A

HL, QPER
A, (HL)
A, VALLIE
(HL) , A

48 730 ASSEMBLY LANGUAGE SUBROUTINES

If VALUE = 1, we can shorten the second alternative to

Lo HL., OPER
INC (HL)

You can use DEC (HL) similarly without changing the accumulator, but both DEC
(HL) and INC (HL) affect all the flags except Carry.

BIT MANIPULATION

The Z80 has specific instructions for setting, clearing, or testing a single bit in a
register or memory location. Other bit operations require a series of single-bit instruc-
tions or logical instructions with appropriate masks. Complementing (CPL) applies
only to the accumulator. Chapter 7 contains additional examples of bit manipulation.

The specific bit manipulation instructions are

SET n,reg
RES n,reg
BIT n,reg
- Sets bit n of register reg
+ Clears bit n of register reg
- Tests bit n of register reg, setting the Zero flag if that bit is 0 and clearing the Zero
flag if it is 1.

All three instructions can also be applied to (HL) or to an indexed address. Note that
the bit position is not a variable; it is part of the instruction.®

Other bit operations can be implemented by applying logical instructions to the
accumulator as follows:

- Set bits to 1 by logically ORing them with 1’s in the appropriate positions.

+ Clear bits by logically ANDing them with 0’s in the appropriate positions.

+ Invert (complement) bits by logically EXCLUSIVE ORing them with 1’s in the
appropriate positions.

+ Test bits (for all 0%) by logically ANDing them with 1’s in the appropriate
positions.

This approach is inconvenient since the logical instructions can only be applied to
the accumulator. It does, however, allow the programmer to invert bits and change
several bits at the same time.

Examples

1. Set bit 6 of the accumulator.
SET &,A

