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Preface

Microprocessors have evolved from units that handled data in
4-bit slices with rudimentary instruction sets into devices that rival,
or surpass, minicomputers in architecture and software instruction
repertoire. The Zilog Model Z-80 represents a microprocessor that is
extremely sophisticated from both a hardware implementation and
software implementation viewpoint. The Z-80 microprocessor is
truly a computer on a chip that requires only a few external compo-
nents—a 5-volt power supply, a simple oscillator, and read-only
memory—to construct a complete computer system. The instruction
set of the Z-80 includes that of the Intel 8080A as a subset, making
the Z-80 an ideal software replacement for the 8080A; the Z-80 has
many new instructions and addressing modes to supplement the
8080A instructions. A search of a string of characters, for example,
can be implemented with one instruction after initialization, the one
search instruction replacing four equivalent instructions in other
MiCroprocessors.

In addition to the Z-80 microprocessor itself, Zilog has imple-
mented other devices to supplement the power of the Z-80. A PIO
provides parallel I/O with two 8-bit ports, software configured 1/0,
vectored-interrupt capability, and automatic priority interrupt en-
coding. A CTC, or Counter-Timer-Circuit, provides programmable
counting and timing functions for real-time events. Other major
devices are also available. Zilog and other manufacturers have de-
veloped microcomputer systems based on this family of Z-80 devices,
and the systems have played their role in narrowing the gap between
“minicomputer systems” and “microcomputer systems,” a division
that becomes less and less distinct from month to month.

The purpose of this book is threefold, to acquaint the reader with
the hardware of the Z-80, to discuss the almost overwhelming (in
number of instructions) software aspects of the Z-80, and to describe
microcomputer systems built around the Z-80.



Section I discusses Z-80 hardware. The architecture, interface sig-
nals, and timing are discussed in the first three chapters. Addressing
modes and instructions are covered in the next two chapters; both
addressing and instruction repertoire are fairly easily grouped and
explained, although they may appear confusing at first glance. The
effect of arithmetic operations and other operations on CPU flags is
presented in Chapter 6. The powerful interrupt sequences of the
Z-80 are discussed in the next c¢hapter. Chapter 8 describes interfac-
ing examples of I/O and memory devices.

Section II describes Z-80 software. A representative Z-80 assembler
program is introduced in the first chapter of the section. An assem-
bler is almost a necessity with a microprocessor having such a large
instruction set, but machine language aspects are also covered.
Chapters 10 through 15 present the common programming opera-
tions of moving data, arithmetic operations, shifting and bit opera-
tions, list and table procedures, subroutine use, and 1/O functions in
relation to instruction set groups. Many examples of each kind of
operation are provided. The last chapter of the section details some
commonly used subroutines written in Z-80 assembly language.

The third section discusses microcomputers built around the Z-80.
Chapter 17 covers Zilog products including the microcomputer
board products in the Z-80 family and development systems. Four
other Z-80 microcomputer manufacturers are described in the last
chapter. Technical Design Labs, Inc., Cromemco, Inc., The Digital
Group, Inc., and Radio Shack. The hardware and software aspects
of all five manufacturers are presented.

The Z-80 will prove attractive to many users, not only as a succes-
sor to the 8080A, but as a powerful computer in its own right.

The Z-80 will soon have a successor, in this dynamic microcom-
puter development environment, but for the time being it represents
microcomputer “state-of-the-art.” The author hopes that the reader
will derive a great deal of benefit from the book and that the Z-80
will solve a few hardware and software implementation problems.

Much credit for this book goes to my wife, Janet, who has solved
my major software implementation problems—manuscript prepara-
tion.

WiLLiaMm BARDEN, JR.

To Bill and Norma and
the Little Green Onions.
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SECTION 1

7-80 Hardware






CHAPTER 1

Introduction

In 1971, Intel Corporation introduced the first microcomputer on
a chip, the Intel 4004. Although the 4004 was truly not a self-con-
tained computer on a single Large-Scale-Integration (LSI) chip, it
contained a great deal of logic associated with computer central
processing unit implementation. One LSI chip replaced hundreds of
circuits that were to be found in conventional minicomputers at the
time. Although the 46-instruction repertoire was not large, it was
adequate for control applications which required decision making
that could not easily be implemented in programmable-logic arrays
and in which extensive mathematical processing was not required.
The 4004 handled data 4 bits at a time and could perform 100,000
additions of two 4-bit operands per second.

The next generation of microprocessors from Intel retained the
PMOS (P-channel metal-oxide semiconductor) fabrication tech-
niques of the 4004, but offered an 8-bit wide data bus and a larger
instruction repertoire of 48 instructions. Designated the 8008, the
microprocessor had a faster instruction cycle time than the 4004 as
data for both instruction execution and decoding and for operands
could be handled in 8-bit slices. In addition, the 8008 could address
16,384 memory locations of 8§ bits each, contained seven 8-bit regis-
ters, had memory stack capability, and had a single-level interrupt
capability. The 8008 could perform approximately 80,000 additions
of two 8-bit operands per second. The instruction set of the 8008 was
not compatible with the 4004.

The 8008 and 4004 had achieved widespread usage through the
electronics industry in a very short time after their introduction,
primarily because there was little else available in the way of micro-
processors. To achieve compatibility with the 8008 insofar as instruc-
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tion repertoire, the Intel 8080, introduced in late 1973, included
the instruction set of the 8008 and supplemented it with 30 more
instructions. Users of the 8008 could now change to a faster, more
versatile microprocessor while not discarding 8008 software pro-
grams, since all 8008 software would presumably execute on the
8080. The 8080 was an NMOS (N-channel metal-oxide semiconduc-
tor) microprocessor that allowed faster clock rates. Additions of two
8-bit operands could now be carried out at rates of 500,000 per sec-
ond. In addition, all other instruction times were much shorter than
the 8008 as the 8080 was built around a 40-pin chip, requiring the
CPU to do much less time sharing of the data bus between data
transfers and instruction implementation.

The 8080 supplemented the hardware features of the 8008. In
place of 16,384 (16K) memory addresses, the 8080 could address
65,536 (64K ). Rather than a limited 7-level memory stack, the 8080
offered a memory stack in external memory itself instead of the CPU.
A binary-coded decimal or bed capability was built into the arith-
metic and logic unit in the CPU; additions of two bed operands
could now be implemented. Expanded addressing modes to permit
direct addressing of external memory was offered. Although the 78
instructions of the 8080 still seemed strange to many programmers,
the instruction set decidedly had moved away from one for pri-
marily control applications to one that was more general purpose in
nature.

In 1976, Intel brought out several variations on the 8080. The
Intel 8085 included a serial input/output capability on the micro-
processor chip itself. In addition, the 8085 had a requirement of
only a single-phase clock (the 8008 and 8080 were two-phase clocks)
and a single 5-volt power supply (the 8008 and 8080 required two
and three voltages, respectively). As the number of supporting
packages had grown impressively (such chips as a programmable
peripheral interface, interrupt controller, and crt controller) Intel
provided very powerful computing capability at faster and faster
speeds (770,000 8-bit adds per second), while still retaining com-
patability with existing software written for the 8008 and 8080.

Although the 8085 was an improvement over the 8080 in many
features, the instruction set remained very similar to the 8080. Only
two new instructions were added, one to read serial and interrupt
data, and one to write serial and interrupt data. Many of the inherent
inadequacies of the 8008 and 8080 remained.

The Zilog, Inc. Z-80 microprocessor chip has provided another
level of sophistication for the widely used 8008/8080 base. Bearing
in mind that the super computer of today is the surplus bargain of
tomorrow, the Z-80 has supplemented the instruction set and capa-
bilities of the 8080 in the same fashion as the 8080 increased the
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capabilities of the 8008. In addition, Zilog has produced a family
of support chips that supplement the Z-80. The Z-80 is software
compatible with the 8080, allowing existing 8008 and 8080 software
to be executed on the Z-80. While the limitations of the 8008 and
8080 instructions and architecture must of necessity be retained in
the Z-80, the Z-80 offers new instructions, new addressing modes,
and new hardware features that provide more capability and versa-
tility than ever before.

Z-80
8008/8080
A REGISTER| FLAGS A FLAGS
B C B' ¢
D E D' E’'
. . . H L H! L'
Fig. 1-1. Register comparison 8008,

8080, and Z-80.

INTERRUPT [ MEMORY
VECTOR | | REFRESH R

[NDEX REGISTER 1X
1Y Z-80

STACK POINTER SP

PROGRAM COUNTER PC

}8008[8%0

In addition to providing the eight 8-bit CPU registers of the 8080,
the Z-80 duplicates the eight registers to offer sixteen registers. Two
index registers offer indexing capability not provided in the 8080.
An interrupt-vector register and memory-refresh register provide
special interrupt functions and dynamic memory-refresh capability.

Fig. 1-1 shows the basic register arrangement of the 8008, 8080, and
Z-80.

80 Z-80
INSTRUCTIONS

Z-80 30 8080

INSTRUCTIONS

8080
48 8008
8008 INSTRUCTIONS

Fig. 1-2. Instruction comparison 8008, 8080, and Z-80.
The 78 instructions of the 8080 are provided in the Z-80, but the
total number of instructions comes to 158. Many of these are logical
extensions of 8080 instructions, but many are extremely powerful

and a complete departure from the 8080. Fig. 1-2 shows the relative
differences between the 8008, 8080, and Z-80.
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All Input/Output and interrupt capability of the 8080 is retained
in the Z-80. I/0 is expanded, however, to operate from any CPU
register and to operate in “block” fashion, that is, to facilitate transfer
of many bytes at a time over a programmed (non-DMA) I/O chan-
nel. Interrupts include the standard external interrupt capability of
the 8080, but supplement this with a separate “nonmaskable” inter-
rupt similar to the Motorola MC6800 and MOS Technology MCS
6502. Other interrupt capability allows for interrupt vectoring any-
where in memory, rather than just to eight locations in page 0, and
for up to 128 levels of interrupts, rather than eight.

The Z-80 Microcomputer Handbook is divided into three sections.
Section I covers the hardware aspects of the Z-80. Architecture, in-
terface signals and timing, addressing modes, instruction set, flags,
interrupt sequences, interface of memory and I/O devices, and DMA
operation are discussed. When applicable, differences between the
8080 and Z-80 are discussed. Section II discusses Z-80 software,
grouped in similar manner to Zilog Z-80 documentation. Section II
also provides programming examples of Z-80 code. Many times, a
short section of a program will greatly clarify the somewhat pedantic
descriptions of individual instructions. Section III discusses five
microcomputer manufacturers that have built microcomputers
around the Z-80 microprocessor chip. Appendix A provides complete
electrical specifications for the Z-80. Appendix B cross-references
8080 instructions to the Z-80 instruction set and Appendix C provides
a short description of each Z-80 instruction. Appendix D reviews
binary and hexadecimal representation while Appendix E lists
ASCII character codes. The last appendix, Appendix F, lists Z-80
Microcomputer manufacturers.
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CHAPTER 2

Z-80 Architecture

The architecture of the Z-80 is shown in Fig. 2-1. Thirteen CPU
and system control signals are sent to or generated in the instruction
decode and CPU control portion of the microprocessor. The data bus
is eight bits wide and is the path for all data transferred between
external memory and input/output devices and CPU registers. The
address bus is sixteen bits wide. Normally the address bus would
specify an external memory address of 0 to 65535 (0 to 64K — 1)
since the Z-80 has a full complement of input/output instructions
and no “memory-mapped” input/output would be required. (In
memory-mapped input/output, a portion of the memory addresses
must be dedicated to addresses of input/output devices).

The main path for data within the CPU is an internal data bus
which connects the CPU registers, arithmetic and logical unit, data
bus control, and instruction register. The arithmetic and logical unit
performs addition, subtraction, logical functions of ANDing, ORing,
and exclusive ORing, and shifting operations between two 8-bit
operands. In addition, binary-coded decimal (bed) operations may
be performed under control of a Decimal Adjust Accumulator in-
struction.

GENERAL-PURPOSE REGISTERS

The Z-80 registers consist of fourteen general-purpose 8-bit regis-
ters designated A, B, C, D, E, H, and L. and A’, B/, C’, I, E/, H,
and L. Only one set of seven registers and the corresponding flag
register F or F’ can be active at any given time. A special Z-80 in-
struction selects A and F or A’ and F’, while a second instruction
selects B, C, D, E, H, L, or B, C’, D, E’, H, or L. The possible com-
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i Z-80 MICROPROCESSOR !

1
INTERNAL
DATA BUS
i DATA 8-BIT
1 AL . BUS DATA
! CONTROL | BUS
]
cPU
. REGISTERS :
3
E ADDRESS 16-8 1T
BUS - AD
INSTRUCTION corROL BugRESS
REGISTER :
i
T
SYSTEM ePU
SYSTEM
CONTROL CONTROL INTERNAL
SIGNALS SIGNALS — CONTROL
|
i
i

A |FLAGS| A' [FLAGS'
B C B’ c'
D E D! E'
H L H' L'
| R

IX

Y

SP

PC

Fig. 2-1. Z-80 Microprocessor architecture.

binations of A and F and the remaining six general-purpose registers
are shown in Fig. 2-2.

The advantage in two blocks of general-purpose registers is that
a programmer may rapidly switch from one block to another. In the
simplest case, this provides more register storage in the CPU. Reg-
ister storage in the CPU is to be preferred over storage in memory
as data can be accessed by a program much more rapidly from CPU
registers than from external memory. In a more sophisticated use of
the block switching capability, the unused set of registers may be
used to hold the environment after receiving an inferrupt. This con-
cept will be discussed in a later chapter in this section.

Just as in the 8080, the general-purpose registers are somewhat
specialized in function. Eight bits of data may be moved between
memory and any of the seven registers or from one register to the
next. Arithmetic and logical operations, however, such as adding
two operands or exclusive ORing two operands can only be done
using the A register (or A’) and another register or memory location.
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A F NON PRIME
B c NON PRIME
D E
H L
A F NON PRIME
8! [ PRIME
D' E'
HI Ll
Fig. 2-2. Register block combinations.
A’ F! PR IME
B C NON PR IME
D E
H L
A’ £ PRIME
B' c' PRIME
D' E!
H' L!

The result of the operation always goes into the A register. In gen-
eral, then, the currently selected A register is the main register for
performing arithmetic and logical operations as shown in Fig. 2-3.

The remaining six registers are grouped into register pairs B,C;
D,E; and H L. For many operations in the 8008, 8080, and Z-80 the
data within the three register pairs represents a memory address.
The H,L registers, for example, originally specified a High memory
address of eight more significant bits and a Low memory address of
eight less significant bits as shown in Fig. 2-4. The same is true of
the B,C and D,E registers. In the 8080, the capability also was pro-
vided to allow the B,C and D,E to specify a memory address, giving
three register pairs that could hold a memory address pointer to
data in memory. In general, the three register pairs will hold mem-
ory addresses as shown in Fig. 24, although a second use for them
is to allow double-precision arithmetic.

8-BI1

ARITHMETIC OR
LOG ICAL RESULT

ALY > FLAGS

OPERAND 1 OPERAND 2
et MEMORY OPERAND

[AIORAY | B {OR B c(c" OTHER GEN-
D (DY E(EY ERAL PURPOSE
HHY L REGISTERS

Fig. 2-3. Arithmetic and logical operations.
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16-817 MEMORY ADDRESS
OR DOUBLE-PRECISION VALUE

gfg'm PAIR T B181 | e ]
EGISTER PAIR
gg | DD T EEY ]
PAIR
E‘EE‘STER [ R ] Ly ]
8 HIGH-ORDER BITS 8 LOW-ORDER BITS

Fig. 2-4. Register pairs.

Double-precision arithmetic involves adding, subtracting, incre-
menting (adding one), or decrementing (subtracting one) a 16-bit
value. Most arithmetic and logical operations in the Z-80 are oriented
towards 8-bit operations, but the Z-80 allows limited operations be-
tween the register pairs and the stack pointer and index registers IX
and IY. The general philosophy for this probably evolved from the
requirement to manipulate memory address pointers in some con-
venient fashion, since all external memory addresses are 16-bit ad-
dresses and two 8-bit operations would have to be performed if 16-
bit arithmetic were not implemented. Fig. 2-5 shows the use of the
register pairs in double-precision operations.

16-B1T RESULT

ALU
ADD, SUBTRACT, :
INCREMENT, DECREMENT [ FLAGS
OPERAND 1 OPERAND 2

Fig. 2-5. Register pair double-
precision operation.

B, C REG|STER PAIR
D,E REGISTER PAIR
H,L REGISTER PAIR

SP

IX

1Y

FLAG REGISTER

The flag register is selected along with the A register. At any given
time A and F or A’ and F’ are selected. Although the flag register is
a register of eight bits as are the other seven CPU registers, it is more
a collection of eight bits conveniently grouped into one register than
a general-purpose register. The bits within the flag register specity
various CPU conditions that have occurred after an arithmetic, logi-
cal, or other CPU operation. For example, it is convenient to know
if the result of the addition of two operands resulted in a zero result,

18



a positive (zero or greater) result, or a negative result. A zero flag
and a sign flag in the flag register may be tested by the program after
the add to determine the nature of the result. Other flags are the
carry flag (C), the carry from the high order bit of the accumulator,
the parity/overflow flag (P/V), specifying a parity or overflow con-
dition, the half carry flag (H), which is essentially a bed carry or
borrow from the low order bed digit, and the subtract flag (N), set
for bed subtract operations. The flag register format is shown in Fig.
2-6. The interaction of CPU operations and the flags is discussed in

BIT BIT
7 6 5 4 3 2 1 0

FLAG
REGISTER

S z X H X [PIV] N [+

[ !-CARRY FLAG

SUBTRACT FLAG

DUAL PURPOSE PARITY!
OVERFLOW FLAG

INDETERMINATE
BCD HALF CARRY FLAG

“ INDETERM INATE
-ZERO FLAG
~SIGN FLAG

Fig. 2-6. Flag register format.

detail in a later chapter in this section. Throughout this book the
term flags, flag register, and condition codes will be used inter-
changeably.

SPECIAL-PURPOSE REGISTERS

The remaining CPU registers that are available to the programmer
are the I, R, IX, 1Y, SP, and PC registers. Two of these registers are
exactly the same as they are in the 8080, the SP, or Stack Pointer, and
PC, or Program Counter. The PC register is a 16-bit register that
holds the location of the current instruction being fetched from mem-
ory. Instructions in the Z-80 are one, two, three, or four bytes long.
If a sequence of eight instructions is being executed, as shown in
Fig. 2-7, the PC will hold the indicated values. Note that the PC
always points to the start of the next instruction, and that the CPU
will automatically increment the PC by one, two, three, or four
depending on the length of the instruction being executed. The PC
is available to the programmer only in the sense that it may be
loaded or stored. No arithmetic or logical operations on the PC are
permitted.
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Whereas the PC is a pointer to external memory that specifies
the address of the next instruction to be executed, the SP is a
pointer to an external memory stack. The concept of a memory
stack is not unique to microprocessors, but virtually every micro-
processor does have stack capability. The external memory stack is
simply an area of memory set aside for temporary storage of CPU
registers, the flag register, and the program counter. Certain instruc-
tions cause transfer of control from the current jump or branch in-

EXTERNAL CONTENTS OF
MEMORY PC AT END OF
LOCATION * INSTRUCTION

0100 | INSTRUCTION1(BviE | 0101
0L | nsrpycTion 22 BviES) | O

0103 0106
INSTRUCTION 3 (3 BYTES)

0106 INSTRUCTION 4 {1 BYTE) 0107

0107 TRSTRUCTION 5 (1 BYTE) 0108 Fig. 2-7. Program counter operation.
0108 INSTRUCTION 6 {1 BYTE) 0109
0109 0108

INSTRUCTION 7 (2 BYTES)

0108 INSTRUCTION 8 (2 BYTES) 0100

0100
¥ ALL VALUES HEXADECIMAL

struction to another instruction and cause the current contents of the
program counter (pointing to the instruction after the jump or
branch) to be automatically saved in the stack area. This saves the
location so that at some later time a returm may be made back to the
next instruction in sequence after the jump or branch.

Not only is the PC saved for certain types of jumps or branches,
but it is automatically saved for interrupts. Here, the address of the
current instruction being executed is saved in the stack as the inter-
rupt occurs and a special interrupt processing routine is entered.
This action will be discussed in detail in a later chapter in this sec-
tion. Lastly, CPU registers and the flag register may be saved and
retrieved from the stack under program control using special stack
instructions.

As data is entered or pushed into the stack area, the stack pointer
is decremented by one count. As data is retrieved from the stack or
pulled, the stack pointer is incremented by one count. A good anal-
ogy to stack operation is a poker hand that is laid down on the table
in a pile consisting of King of Hearts, Jack of Spades, and Ace of
Diamonds with the King at the bottom. When the cards are re-
trieved, the first card picked up is the last laid down, the Ace of
Diamonds, followed by Jack of Spades and King of Hearts. This type
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of stack operation is a LIFO operation, or last in, first out. The con-
tents of the SP during a typical instruction sequence is shown in
Fig. 2-8. Note that the stack builds from higher numbered memory
to lower numbered memory as more data is stored in the stack.

The remaining registers of the Z-80 are not contained in the 8080.
The index registers IX and IY are two 16-bit registers that permit
indexed addressing in Z-80 programs. While the 8080 had indexed-
like instructions, it did not permit true indexing. When an instruction
is executed in an indexed addressing mode, one of the two index
registers is used to calculate the memory address of the operand.

MEMORY STACK
(STACK) POINTER
LOCATION CONTENTS

0100

0101

0102 —o{ DATAA 0102

0103 DATA A

(I} PUSH DATA A

0100 —t=  DATA B

0101 DATA B
0102 DATA A 0100
0103 DATA A
Fig. 2-8. Stack Pointer (SP) operation. (2 PUSH DATA B
0100
0101
0102 —~pd  DATA A 0102
0103 DATA A
(3} PULL DATAB

0100 —{ DATAC

0101 DATA C
0102 DATA A 0100
0103 DATA A

(4 PUSHDATAC

The effective address of the memory operand is obtained by adding
the contents of the index register and an 8- bit value contained in the
displacement field of the instruction employing the indexed address-
ing mode. Indexed operations of this kind are extremely powerful
for efficient programming and will be discussed in more detail later.

The Interrupt Vector Register I is an 8-bit register that can be
loaded with 8 bits of data specifying a memory address. This ad-
dress, when combined with a lower-order 8 bits of address supplied
by the interrupting device, represent a memory address whose con-
tents in turn specify the memory address of the software interrupt
handling routine for the device. Suppose that a paper-tape reader
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interrupts the Z-80. After the Z-80 recognizes the interrupt, it signals
the paper-tape-reader controller to pass over the low order 8 bits
of the address. The paper-tape-reader controller then passes over
the 8 least significant bits of the address which are combined with
the 8 higher order bits of the I register. If the paper-tape reader
supplied 14H (A suffix of “H” will represent base 16, or hexadecimal
in all subsequent discussions) and the I register contained FFH,
then the combined address would represent FF14H. The Z-80 con-
trol logic would then go to external memory location FF14H, pick
up its contents and transfer control to the location specified, in this
case EOOOH as shown in Fig. 2-9. In general, the I register holds the
8 most significant bits of an interrupt vector table which may hold
interrupt vectors for 128 interrupting devices.

LOW ORDER 8 BITS
FROM DEVICE

recister  [rla[ia]a]a]e]1] [oJoTol1e]1]o]0]

’

16-B1T MEMORY
MEMORY ADDRESS = FF14H
LOCATION
FF10
FF11
FF12
FF13 , CONTENTS OF FF14
FFl4 0 0 POINTS TO INTERRUPT
FF15 £ 0 PROCESSING ROUTINE
FEL6 AT E000
FF17
£005
£004
£003
£002
£001 )
£000 START AT INT ROUTINE

Fig. 2-9. | Register actions.

The I register is used in one of three interrupt modes which the
Z-80 may utilize under program control. One of the other two modes
is identical to the 8080 interrupt action, allowing up to eight vec-
tored interrupts. The last interrupt mode permits a special ninth in-
terrupt. In addition to the three external interrupt modes, a non-
maskable (always active) external interrupt permits a high-priority
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interrupt to yet another interrupt location. All four kinds of interrupt
groupings are discussed in a later chapter in this section.

The last special-purpose register is the 7-bit Memory Refresh reg-
ister R. When external memory is made up of dynamic memories,
the R register allows automatic refreshing of this kind of semicon-
ductor memory which periodically (typically every 2 milliseconds)
needs to have every cell read or refreshed to retain its contents. The
contents of the R register are incremented by one after every in-
struction fetch and the contents are sent out along the least signifi-
cant 7 bits of the address bus while the Z-80 CPU is not accessing
memory. Every cell of external memory with a predefined configura-
tion of its address bits equal to the R register can now be refreshed
without fear of contention (simultaneous read) of the same memory
cell by the Z-80 CPU. The R register is normally not used by the
programmer.

MICROCOMPUTER COMPONENT PARTS

As in any microcomputer, the microprocessor chip itself does not
constitute the complete computer system. Fig. 2-10 shows the com-
ponent parts of a typical Z-80 system. The Z-80 microprocessor chip

ADDRESS  DATA
BUS BUS
EXTERNAL
MEMORY
(RAM, ROM,
PROM,
EPROM,
Z-80 ETC.)
MICROPROCESSOR
AND ASSOCIATED
LOGIC
8
1/0 DEVICE
CONTRIOLLER jocgonnem 1[0 DEVICE 1
2 ft—= |JO DEVICE 2
CONTROL
PANEL
LOGIC
(IF ANY)
M N = |0 DEVICE 3

Fig. 2-10. Z-80 Microcomputer system component parts.

along with supporting circuitry interfaces to external memory. Con-
trol signals are passed between CPU circuitry and external memory,
memory addresses are passed along the 16-bit address bus, and data
is passed along the 8-bit address bus. External memory may be any
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combination of the many kinds of external memory available today.
RAM (random access memory) is semiconductor memory that can
be both read and written into. ROM (read only memory) is a pro-
duction-type memory that contains a program or data or both which
can be read but not altered. PROM (programmable read only
memory ) may be programmed in the field with inexpensive equip-
ment, but may not be altered once programmed. EPROM (erasable
programmable read only memory) may be programmed for a read
only operation, but may be periodically erased under ultraviolet
light. Many wags have suggested another type, a WOM or write
only memory, but in most cases the former memory types are com-
monly used.

The Z-80 microprocessor and associated CPU circuitry interface
to I/O device controllers along with external memory. I/O device
controllers perform several functions. Firstly, the I/O device con-
trollers buffer data passing between the Z-80 CPU registers or ex-
ternal memory and the 1/O device. The buffering matches the high-
speed data-transfer rate of the Z-80 CPU to the relatively low-speed
rate of the I/O device. It is important for the CPU not to have to
wait until the I/O device accepts data, as the wait time may repre-
sent tens of thousands of Z-80 instructions. A Teletype Corporation
ASR-33 Model, for example, accepts data at the rate of 10 bytes per
second. While waiting for the ASR-33 to accept a byte of data,
the Z-80 microprocessor could be executing 1/10 second worth of
instructions or about 30,000 instructions. The I/O controller allows
the Z-80 to pass a byte in several microseconds and signals the Z-80
when the teletypewriter is done processing the data from the Tele-
type device controller.

Another function performed by the I/O device controller is for-
matting of the data. A floppy disc transmits data as a serial bit
stream. The floppy disc controller, among other functions, converts
the serial bit stream into 8-bit parallel bytes in proper format for
transmission to the Z-80 CPU over the data bus.

A third function of the I/O device controller is that of level con-
version. Data from CPU logic is in TTL (or Transistor-Transistor
Logic) signal levels, which are nominally 0 volts and 5 volts. A Se-
lectric I/O typewriter may require 24 to 48 volts to drive the sole-
noids of the teletypewriters and obviously some voltage level con-
version is required.

Other functions of the 1/O device controller are timing, synchro-
nization, control-signal handshaking, and transmission of device
status. A wide range of 1/O devices interface to the Z-80 through
their respective device controllers, ranging from 5 character-per-
second teletypewriter equipment, audio cassette equipment, analog-
to-digital converters, and 100,000 byte-per-second graphic display
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equipment, to mention a few of the virtually dozens of devices.
Some of the more common generic types will be covered in a later
chapter of this section along with special-purpose LSI chips of the
Zilog Z-80 family which are designed to permit ease of interfacing.

The last functional block of Fig. 2-10 is that of the control panel.
Many current microcomputers have dispensed with a control panel
except for one sparsely configured with a power switch and a reset
switch. Pressing the reset switch causes a nonmaskable interrupt
which transfers control to a special monitor program in PROM or
ROM memory. The monitor program allows the user to interrogate
memory locations, change the contents of memory locations, modify
registers, load and save programs on I/O devices and other func-
tions. If a control panel is present, it performs the same functions
as the monitor program by allowing the user to manually address,
examine, and change data in CPU registers and memory. The only
advantage that a control panel would have over a monitor program
is that only the CPU, memory, and control panel are required to
execute programs. However, any viable system must have some kind
of 1/O device and in almost all cases, the control panel is an added
complexity.

Section IIT discusses many of the more popular Z-80 microcom-
puter systems and will give the reader an overview of what is avail-
able in current Z-80 microcomputers insofar as system architecture
is concerned.
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CHAPTER 3

Interface Signals and Timing

The Z-80 CPU chip is a 40-pin dual in-line package. The pinout
of the chip is illustrated in Fig. 3-1, with the pins logically grouped
according to function, rather than the actual physical representation.

ADDRESS AND DATA BUS

The address bus is represented by signals A1l5 through A0, where
Al5 is the most significant bit of the address bus and A is the least
significant bit. A15 through AO are active high and are a tri-state
output meaning that when the address bus is inactive, its outputs
are in a high-impedance state. The address bus lines considered to-
gether represent a 16-bit memory or device address. Since 2'¢ ad-
dresses can be held in 16 bits, external memory of 65536,, or 64K
may be addressed directly by the Z-80 CPU. When I/O devices
are addressed, the least significant eight lines of the address bus,
A7-A0, hold the I/O device address, which may be 0 through 255;,.
In addition to memory or I/O device addresses, the least significant
seven lines of the address bus hold the contents of the R, or Memory
Refresh Register, for certain times during execution of each in-
struction.

The data bus, signals D7 through DO, are tri-state active high
signals with D7 representing the most significant bit and DO repre-
senting the last significant bit. The data bus is bidirectional, per-
mitting data to be transferred to CPU registers from external mem-
ory or I/ O devices or from CPU registers to external memory or I/O.

BUS CONTROL SIGNALS

Associated with the address bus and data bus are two CPU bus
control signals, the input signal BUSRQ and the output (acknowl-
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Fig. 3-1. Z-80 interface signals.

edge) signal BUSAK. Signal BUSRQ is an active low signal that is
generated by an external device to gain control of the CPU busses.
During the time the external device has control of the busses, it will
probably perform a direct-memory access (DMA ) operation. DMA
permits an external device to go directly to memory and transfer
data between memory and the device. The CPU must be “locked
out” during a DMA operation to avoid the conflict of the CPU re-
questing memory service at the same time and from the same mem-
ory location as an external device. When the external device brings
down (logic 0) the BUSRQ, Bus Request signal, the CPU responds
with acknowledge signal BUSAK, Bus Acknowledge. BUSAK is an
active low output that signifies that the address bus, data bus, and
CPU output-control signals are now in the high-impedance state
and can be controlled by an external device for DMA operations.

MEMORY SIGNALS

__There are four signals associated with memory operation, MREQ,
RD, WR, and RFSH. The first, MREQ, Memory Request, is a tri-
state active low signal indicating that the address bus holds a valid
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memory address. Essentially, this is part of a chip enable signal for
external memory to inform external memory to output data for a
memory read or to input data for a memory write. The RD and WR
signals are tri-state active low outputs to external memory indicating
whether the memory operation is to be a read or write. When signal
MREQ goes low, either RD or WR will also be low during a portion
of the machine cycle. When MREQ and RD are both low, an ex-
ternal memory read will be performed. When MREQ and WR are
both low, an external memory write will be performed. Both reads
and writes utilize the address on the address bus and transfer data
along the data bus.

The RFSH signal is not associated with normal memory opera-
tion. It is used only when dynamic memories are used as external
memories. Dynamic memories periodically require a refresh to
maintain the data stored within the memory cell. This is essentially
a memory read operation with the data not being transferred from
the memory. Typical dynamic memories are set up so that a refresh
signal can be input to the memory, along with five or six address line
inputs. To refresh an entire memory, six address line inputs would
require sixty-four separate refreshes (2°) with the entire refresh
cycle lasting no longer than 2 milliseconds. When the output signal
RFSH is low and signal MREQ is also low, external dynamic memory
will use the contents of the least significant seven bits of the address
bus to implement one of the refresh cycles. RFSH is active at every
instruction fetch, and since the R register is continually being in-
cremented after each fetch, the address lines will continually reflect
a new address for the next refresh cycle. For the above example of
six address line inputs, it will take sixty-four instruction cycles to
refresh dynamic memory or approximately 256 microseconds (.256
milliseconds) at about 4 microseconds per instruction, average.

INPUT/OUTPUT SIGNALS

Signal TORQ is a tri-state, active low output signal used for Input/
Output Requests. When signal IORQ goes low, the least significant
eight bits of the_address bus, A7-A0, hold an I/O device address.
Signals RD and WR must then be used to determine_whether the
I/O operation is to be an I/O 1'e_a__(_i or write. Signal TORQ is also
used in conjunction with signal M1 for interrupt responses as dis-
cussed below.

OTHER CPU SIGNALS

Signal M1 is an active low output signal that indicates the micro-
processor is in the fetch cycle of the instruction. Every instruction
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has a fetch cycle as the first byte of the instruction, the operation
code, is fetched from memory and then decoded. In the Z-80, unlike
the 8080, several instructions have two-byte operation codes and
signal M1 will be low during each of the fetches of one byte.

The RESET signal is an active low input signal that is used as a
master CPU reset. This signal would be brought low immediately
after power up, or at any time when the microcomputer system
was to be reset. When RESET is brought low, the following actions
occur:

L. The interrupt enable flipflop is disabled, preventing system
interrupts except for NMI (see below).

- Register I, the Interrupt Vector Register, is set to 00H.

Register R, the Refresh Register, is set to 00H.

Interrupt mode 0 is set.

The address bus goes to a high-impedance state.

. The data bus goes to a high-impedance state.

. All output-control signals go to the inactive state.

N U o

The WAIT signal is a signal associated with slow memories or
1/0 devices. As long as the WATT signal is low, the CPU will “mark
time,” doing nothing, while the external memory or 1/O device re-
sponds to a previous memory or 1/O request. The WATT signal en-
ables slow memories or (rarely) slow I/O devices to be interfaced
to the Z-80 without buffering.

The HALT signal is_an active low output signal that goes low
during the time that a HALT instruction is being executed. A HALT
instruction in a program is typically used for one of two conditions.
Either the program has performed all of its functions and termi-
nated, or a halt has been reached and the program is waiting for an
interrupt to occur. When the CPU is in a halt state, it performs no-
operations instructions (NOP) to ensure proper memory refresh
activity.

INTERRUPT-RELATED SIGNALS

The remaining logic signals are associated with interrupt process-
ing. Signal NMI is a negative-edge triggered input that specifies a
nonmaskable interrupt is to be performed. When this signal is mo-
mentarily brought low, the CPU will recognize this interrupt at the
end of the current instruction. When the CPU recognizes the NMI
interrupt, the following actions occur:

1. The current contents of the program counter PC is saved in the
memory stack.
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9. The CPU transfers control to memory location 0066H, that is,
instruction execution starts from location 0066H which must
contain an NMI interrupt processing program.

An NMI interrupt of this kind cannot be disabled and will always
be recognized by the CPU at the end of the current instruction cycle.
The exceptions to this are that signal BUSRQ will take precedence
over a NMI signal, and that a continuous WAIT state will prevent
the current instruction from ending and thus prevent the NMI from
being recognized.

The main interrupt request is signal TNT, an active low input
signal that is supplied by external devices to cause an interrupt. The
INT signal will be recognized by the CPU at the end of the current
instruction if the interrupt enable flip-flop IFF in the CPU has been
set by the program and if the BUSRQ signal is not active. If these
conditions are met, the CPU accepts the interrupt and acknowledges
the interrupt by sending out an IORQ during the fetch (M1) time
of the next instruction. Since TORQ never occurs during M1 for an
I/O instruction, the interrupting device recognizes the IORQ and
M1 condition as an interrupt acknowledge. Further actions taken for
this interrupt are discussed later in this section.

CPU ELECTRICAL SPECIFICATIONS

The electrical specifications for the Z-80 microprocessor chip are
shown in Chart 3-1. All inputs and outputs are TTL compatible
facilitating interfacing. There is only one power-supply voltage, a 5-
volt power supply. The Z-80 microprocessor chip alone requires a
maximum current of 200 milliamps. Unlike the 8080, there is only a
single-phase clock input required, which is also at TTL levels. The
frequency of the clock for the original Z-80 was 2.5 megahertz, how-
ever, faster versions will accept a 4-megahertz clock at this time of
writing. Detailed specifications for other dynamic parameters are
provided in Appendix A.

CPU TIMING

All instruction execution in the Z-80 may be broken down into
a set of basic cycles. There are two kinds of cycles, the most basic
being a clock cycle, or T cycle. If a 4-MHz clock is being used for
the Z-80, each T cycle will be a constant length (period) of 250
nanoseconds as shown in Fig. 3-2. The T cycles are used to control
operations within a larger cycle called the machine cycle, or M
cycle. Every instruction executed within the Z-80 consists of from
one to six machine cycles (with the exception of special block-
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Chart 3-1. Z-80 Electrical Specifications

ABSOLUTE MAXIMUM RATINGS

Temperature Under Bias 0°C to 70°C

Storage Temperature —65°C to +150°C

Voltage On Any Pin —0.3V to +7Vv
with Respect to Ground

Power Dissipation 1.1wW

© DC CHARACTERISTICS

*Comment

Stresses above those listed under
“Absolute Maximum Rating” may
cause permanent damage to the
device. This is a stress rating only
and functional operation of the
device at these or any other con-
dition above those indicated in
the operational sections of this
specification is not implied. Expo-
sure to absolute maximum rating
conditions for extended periods
may affect device reliability.

Ta = 0°C to 70°C, Ve == 5V = 5% unless otherwise specified

Symbol Parameter Min. | Typ. | Max. | Unit Test Condition
Viie Clock input low Voltage | —0.3 0.45 \
Vine Clock Input High Voltage | V..M Vee v
Vi, Input Low Voltage —0.3 0.8 \
Vin Input High Votlage 2.0 Vee \%
Vor Output Low Voltage 0.4 \ lor, == 1.8 mA
Vou Qutput High Voltage 2.4 \' lor = —100 puA
leo Power Supply Current 200 mA te = 400 nsec
31 Input Leakage Current 10 | pA Vin == 0 to Ve
lon Tri-State Qutput Leakage 10 | pA | Vour=— 2.41t0 V.
Current in Float
oL Tri-State Output Leakage —10 | pA Vour == 04V
Current in Float
L Data Bus Leakage Current *10 | A | 0K Vin < Vee
in Input Mode
® CAPACITANCE Ta:zz 25°C, f=— 1 MHz
Symbol Parameter Typ. Max. Unit Test Condition
Ce Clock Capacitance 20 pF
Cin Input Capacitance 5 pF ::Trxf::srfe:g:Zan
Cour Output Capacitance 10 pF
[1] Clock Driver Vee
330 Q:E l
om—1I> 0
l/ Z-80

An external clock pull-up resistor of (33002) will meet both the ac and dc clock re-

quirements.
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Fig. 3-2. Basic instruction cycles.

related instructions), and each of the machine cycles is comprised
of three to six T cycles as shown in the figure.

There are seven basic machine cycles that can occur during Z-80
operation:

Operation code fetch cycle (M1 cycle)

Memory data read or write cycle

I/O read and write cycles

Bus Request/Acknowledge cycle

Interrupt Request/Acknowledge cycle

Nonmaskable Interrupt Request/Acknowledge cycle
Exit from a HALT instruction

NO Uk o=

M1 CYCLE

Every instruction execution is made up of one operation code
fetch cycle, or M1 cycle. A few instructions have two bytes for the
operation code and therefore have two M1 cycles. An M1 cycle
allows the CPU to read the operation code byte from external mem-
ory, decode the operation to be performed, and implement a portion
or possibly all of the operation (for short instructions that are one
machine cycle long.) Fig. 3-3 shows the timing diagram for an INC
R instruction which will also illustrate the M1 cycle. The INC R
takes only one machine cycle to fully execute the M1 cycle. Four T
cycles are required.

As the CPU enters the M1 cycle, signal M1 falls to indicate that
this cycle is active. The contents of the program counter is gated to
the address bus in preparation for the fetch of the op code of the
next instruction. On the falling edge of T1 signals MREQ and RD
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go low, indicating to the external memory that there is a valid
memory address on the address bus. The external memory will now
gate the contents of the specified memory location onto the data
bus somewhere before the rising edge of T3 (unless it is a slow
memory as discussed later in this chapter). On the rising edge of
T3, the operation code byte on the data bus is clocked into the CPU.

Shortly thereafter, the RD signal goes to an inactive level, along with
MREQ and MI. The remaining two T cycles of MI are used to pro-
vide a refresh time for external dynamic memories. Signal RFSH is
blought low and MREQ is again active to indicate to external dy-
namic memory that refresh can proceed. The data bus will now have
the contents of the R register present to provide a refresh address.

INC R INSTRUCTION

M1 CYCLE

! 72 3 1 11
® —t \ \ \ \ \
ao-a1s 1Y PC X REFRESH ADDR, )
weea |\ [\ /A R U
R T\ /
L U A A VO O DO O A
M1 N [ ] -
DBO-DB7 {On]}

——-’— INC R EXECUTION ———{»——

Fig. 3-3. M1 (op code fetch) cycle.

During the last two T cycles of M1 the CPU decodes the opera-
tion code of the instruction, which is an INC R. The INC R takes
the contents of the specified general-purpose register R (A, B, C,
D, E, H, or L or their primes), increments it by one count, and puts
the result back into the register, setting the appropriate condition
codes. Since no further memory accesses have to be made and the
accesses of CPU registers can easily be made in several hundred
nanoseconds, no further machine cycles are required.

33



MEMORY DATA READ AND WRITE CYCLES

The memory read and write cycles will be illustrated with ex-
amples of the execution of two instructions. Fig. 3-4 shows the exe-
cution of an LD R, (HL) instruction which loads the contents of
the memory location pointed to by the H,L register pair into CPU
register R. The M1 cycle is identical to that previously discussed.
At the end of M1, the CPU has decoded the instruction and initiates
a memory read cycle to obtain the eight-bit operand from memory.
The address bus, MREQ, and RD signals are activated just as in
the case of the M1 cycle. The address bus holds the contents of the
H,L register pair during this time and external memory gates the
operand onto the data bus. On the falling edge of T3, the memory
operand is clocked into the CPU, loading register R.

LD R, (HU INSTRUCTION
M1 CYCLE MEMORY READ CYCLE

1 12 13 T4 ! 2 13
® _f—\__f_-\__f__\__%’_ﬁ\_l——\__j__\_.}——\__f_
AD - A5 ) MENORY ADDR.
WREQ A [
) T 1
WR
s @
WATT JAY SRR Y A VO E

= |NSTRUCTION FETCH——"—*——LD R, {HU EXECUTION—‘I

Fig. 3-4. Read cycle.

A memory write is shown in Fig. 3-5. The instruction in this case
is an LD (HL), R which takes the contents of the specified CPU
register R and writes it into the external memory location pointed
to by the H,L register. The MREQ and address bus outputs are
active as in the previous examples. No RD signal is output, but the
contents of the specified CPU register are gated onto the data bus
after the falling edge of T1. This data remains on the data bus and
at the falling edge of T2 the WR signal becomes active. With MREQ
and WR active, external memory writes the data on the data bus into
the specified memory location, using address bus outputs A15-A0.
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Fig. 3-5. Write cycle.

I/0 READ AND WRITE CYCLES

An 1/O Read or Write cycle occurs during an input or out-
put instruction. Input and output instructions generally are three
or four machine cycles long and from 10 to 20 T cycles (2.5 to 5
microseconds long for a 4-MHz clock). The more sophisticated 1/0
block-transfer instructions (INIR, INDR, OTIR, OTDR) transfer
up to 256 bytes, however, and repeat machine cycles until all bytes
have been transferred, resulting in total instruction times that are
dependent on the number of bytes to be transferred and the speed
of the I/O device. Fig. 3-6 shows an input cycle and Fig. 3-7 shows

[~——————=INSTRUCTION FETCH‘—'i—— LD (HU), R EXECUTION ——‘l

1/0 READ CYCLE
m 12 Ty £ 1
— \ \ \ \ .
X PORT ADDRESS X
\ [
\ [
N,

]

Fig. 3-6. 1/0 Read cycle.
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an output cycle. The I/O device address is placed on lines A7-A0
of the address bus at the start of the machine cycle and the IORQ
is enabled after the rising edge of T2. If a read is taking place, sig-

nal RD is enabled at the same time as IORQ. The external device
controller recognizes a read by the IORQ and D and gates its data
onto the data bus, where, on the falling edge of T3, it is clocked
into the CPU.

10 WRITE CYCLE
T 12 Tw LE n

¢ —d \ \ \ \ ] L
no-ar X PORT ADDRESS X

ToRQ \ [
R \ 1
BATABUS —+— out  E—
e il G A W S SO

Fig. 3-7. 1/0 Write cycle.

If a write is taking place, the WR signal is enabled in place of
the RD at the same time as TORQ. Previous to the WR data from
the CPU has been placed in the CPU register (during T1). This
data is available during the remainder of the write cycle and the
external I/O device controller will input it somewhere in this period.

Note that for both input and output cycles, signal WAIT is inter-
nally enabled after T2. This causes the CPU to defer further 1/0O
processing until the WAIT line again is deactivated and effectively
adds one clock cycle to the time of the input and output cycle. This
condition is implemented to give the CPU additional time to sample
the external WAIT line to respond to slow I/O devices. Additional
WAIT states may be imposed by the external 1/O device controller
for as long as it takes the I/O device controller to execute the 1/O
instruction. These would be inserted for n number of T cycles after
the CPU-imposed wait cycle.

BUS REQUEST/ACKNOWLEDGE CYCLE

At any time, an external device can gain control of the address
bus A15-A0, data bus D7-D0, and MREQ, RD, WR, IORQ, and
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RFSH lines by enabling the input signal BUSRQ. Normally, the
reason for this would be to allow an external device controller to
communicate directly with external memory to transfer data be-
tween high-speed I/O devices and memory without CPU interfer-
ence (Direct Memory Access or DMA). See Fig. 3-8. When signal
BUSRQ is enabled, the CPU detects the signal during the rising
edge of the last T cycle of a machine cycle. The T cycle is then
completed and on_the next T cycle the CPU responds to the request
by output signal BUSAK. At the same time, the address bus, data
bus, and other signals are set to the tri-state high-impedance state.
Now any changes to the lines will not be affected by the CPU nor
will the CPU affect the state of the lines. When the I/O device
controller has completed the DMA transfer (typically one byte),
it will deactivate BUSRQ. This condition will be detected by the
CPU on the next rising edge of a T cycle and it will bring up or
disable BUSAK on the next T cycle after that. The CPU will then
continue processing from the point at which it gave control to the
bus requestor.

ANY M CYCLE BUS AVAILABLE STATES

LASTT T, T T 7l

STATE X X X
o SV (R VUV S VR S VD A VY A VIR A VY 2 W
BUSRI /

) SAMPLE"\’ SAMPLE I

BUSAK \ ‘.
A0 - A15 ) SRPRRUGIY AP Sp—— o —
Do - b7 ) e et S
FIREQ, RO, e per e EEEE —
WR. TORQ, FLOATING
RFSH

Fig. 3-8. Bus Request/Acknowledge cycle.

INTERRUPT REQUEST/ACKNOWLEDGE CYCLE

If the CPU interrupt enable flip-flop has been set to allow ex-
ternal interrupts, and if a bus request action is not taking place,
the CPU is free to recognize external interrupts. An external device
makes the interrupt request by enabling signal INT. During the
rising edge of the last T cycle of the last machine cycle of an in-
struction, the CPU polls the state of the INT line, and, if low, starts
an interrupt cycle as shown in Fig. 3-9. During T1 of the interrupt
cycle, the M1 signal is enabled. T2 and two WAIT states are pro-
vided (the WAIT states are internally generated) to give sufficient
time for external daisy-chained interrupt circuitry to respond to the
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interrupt acknowledge and place an interrupt response vector on
the data bus. The external interrupt logic identifies the interrupt
acknowledge from the CPU by the combination of M1 and TORQ.
After detecting these two signals, the external interrupt circuitry
responds by placing the proper data on the data bus, which is
clocked into the CPU during the rising edge of T3. During T3, the
M1 and TORQ signals are disabled and refresh action is started.
Further action during the external interrupt cycle is dependent on
the interrupt mode and is discussed later in this section.

LASTM CYCLE
OF INSTRUCTION

Mi

LASTT
STATE . T2 T,

o - \ \ \ \ \ \ M\

A0 - Al5 PC X_REFRESH
W \

WREQ -
oRG \  —
BATA BUS {1}

WATT N SRR FDUSRONRNN Duuuous DS D R ann Wil iaiubuiaen

RD

Fig. 3-9. Interrupt Request/Acknowledge cycle.

NONMASKABLE INTERRUPT REQUEST CYCLE

The CPU action during this machine cycle is shown in Fig. 3-10.
The NMI signal cannot be disabled by the CPU interrupt enable

—— LASTM CYCLE M1

S m 12 13 1 1

LUUE T i W A ZASmnf! ApSsaugt Syt Ayt A It C

AD-A15 X PC X REFRESH_J)(

M /

MREQ \ I\ /

RD \ /

RESH L J A

Fig. 3-10. Nonmaskable Interrupt Request cycle.
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flip-flop. The NMI interrupt also takes priority over the external
interrupt. It is recognized during the last T cycle of the last ma-
chine cycle of the current instruction as in the case of the external
interrupt. Fig. 3-10 shows the first portion of this interrupt action.
IORQ is not enabled since on external device needs to be notified
that the interrupt was accepted. The first machine cycle is similar
to a memory read operation, except that no data is read from ex-
ternal memory. Refresh operations are carried on in T3 and T4
as RFSH and MREQ are enabled, and the contents of the R reg-
ister are placed on the address bus A7-A0. The NMI interrupt se-
quence is discussed later in this section.

EXIT FROM HALT INSTRUCTION

When a software HALT instruction is executed, signal HALT is
enabled automatically by the CPU, The CPU continually generates
M1 cycles for this HALT and does not advance the program counter.
Data from memory is ignored. Refresh logic is enabled during the
last two T cycles of M1 as before to enable proper refresh of ex-
ternal memory while the CPU is in the halted state. The HALT
state can only be interrupted by a RESET or receipt of an NMI

m M1 M1

T m 12 3 1 ! 12
® a—d \ \ \ \ \ \ A
FALT \ /
LS N VORI IS VA ittt A AR
NMT

HALT INSTRUCTION
IS RECEIVED DURING
THIS MEMORY CYCLE

Fig. 3-11. Exit from HALT instruction.

or external interrupt, both of which cause normal interrupt pro-
cessing as before and cause the CPU to advance the program coun-
ter to the next instruction before the program counter is stored in
the memory stack. The HALT instruction exit is shown in Fig. 3-11.

MEMORY OR I/0 WAIT STATES

In general, WAIT states may be initiated after any memory or
1/O request. When external memory or I/O receives an RD ¢ RD or WR
signal and an MREQ or TORQ, it can respond by a WAIT input
to the CPU. The CPU will detect the WAIT condition and defer
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further processing until the memory or I/O device controller has
had time to respond. External memories must be capable of re-
sponding in a little over one T cycle, or 250 nanoseconds for a 4-
MHz clock, while input/output device controllers transferring data
to the CPU have about two T cycles or 500 nanoseconds.
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CHAPTER 4

Addressing Modes

The Z-80 has a wide repertoire of instructions, ranging from a
simple instruction to set the interrupt enable flip-flop to a block-
search instruction that searches a string of bytes for a given byte.
Because of the wide range of functions that Z-80 instructions per-
form, instructions range in length from one byte to four bytes. In
addition to differences in length, instructions differ in how external
memory is addressed. Some instructions require no operand and can
be executed during the last portion of an M1 (fetch) cycle. Other
instructions require an operand from a CPU register and a second
operand either from another CPU register or external memory. The
second operand may be specified in a variety of ways. As an exam-
ple, the ADD instruction adds two 8-bit operands. One of the op-
erands is in the A register, while the second can be in another CPU
register (Register Addressing), an immediate value in the ADD
instruction itself (Immediate Addressing), in memory and pointed
to by the contents of the HL register pair (Register Indirect Ad-
dressing), or in a memory location whose address is computed by
adding an 8-bit displacement in the instruction and the contents of
an index register (Indexed Addressing). This chapter will describe
the various addressing modes of the Z-80, using examples of specific
instructions. The next chapter discusses instruction types and de-
scribes which addressing modes are valid for each instruction.

The Z-80 has the following addressing modes, generally ordered
from simple to complex:

1. Implied Addressing
2. Immediate Addressing
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3. Extended Immediate Addressing
4. Register Addressing

5. Register Indirect Addressing

6. Extended Addressing

7. Modified Page Zero Addressing
8. Relative Addressing

9. Indexed Addressing
10. Bit Addressing

IMPLIED ADDRESSING

In this kind of addressing, the operation code of the instruction
is fixed. There are no variable fields within the instruction, and the
instruction always performs exactly the same function. Examples of
this kind are the CPL and LD SP, IY instructions.

The format of the CPL, Complement Accumulator, is shown in
Fig. 4-1. This instruction takes the contents of the A register, forms
the ones complement (changes all zeros to ones and all ones to
zeros) and stores the result back into the A register. No general
condition code bits are affected. The source and destination are fixed
and no other register can be used.

CPL COMPLEMENT ACCUMULATOR
Fig. 4-1. Implied oddressing in

! 0 CPL instruction.
BYTEO Jo 0 1 0 1 1 1 1] 2FH=0PCODE

The format of the LD, SP, IY instruction is shown in Fig. 4-2.
Load SP with 1Y takes the 16-bit contents of the IY register and
transfers it to the SP register. The contents of the IY register re-
mains unchanged and no condition-code bits are affected. The two-
byte configuration FDF9H will always produce the same action of
loading the SP register from the 1Y register.

LD SP.IY LOAD SP WITH 1Y

Fig. 4-2. Implied addressing in LD
SP,1Y instruction.

7 0
BYTED [1 1 0 1| FDH
BYIE1 |1 1 0 1

CoD
F9H } 0F CODE

1111
1110

All of the instructions discussed in the next chapter under General-
Purpose Arithmetic and CPU Control are of this kind, as are the
instructions under the Exchange, Block Transfer, and Search Group.
In the latter group, the actions are more elaborate, but the instruc-
tion format is fixed.
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IMMEDIATE ADDRESSING

In the immediate addressing mode, the second or third byte of
the instruction itself is the operand. Immediate addressing is valu-
able when it is necessary to load or perform an arithmetic or logical
operation with constant data. The immediate addressing instructions
ADD AN and XOR N are examples of this addressing type.

The format of the ADD A,N instruction is shown in Fig. 4-3. The
contents of the A register are added with the contents of the second

ADD AN ADD VALUE NTO ACCUMULATOR

Fig. 4-3. Immediate addressing in
ADD A,N instruction. BYTEO [1 1 0 0 0 1 1 0] C6H=0PCODE
BYFE 1 N IMMED IATE VALUE

byte of the instruction and the result put into the A register. If two
bytes of the ADD A,N instruction were C633H (ADD A,33H) and
the A register contained 80H, 80H and 33H would be added to
produce a result of BS3H and this result would be put into the A
register. The condition codes would also be set on the results of
this instruction.

The format of the XOR N instruction is shown in Fig. 4-4. The
contents of the A register are exclusive ORed with the second byte
of the instruction and the result put into the A register. The condi-
tion codes are set on the result of the instruction. If the instruction
were EE35H and the contents of the A register were 33H, 35H and
33H would be exclusive ORed to produce 06H, which would be
put into the A register.

XOR N EXCLUSIVE OR IMMEDIATE AND ACCUMULATOR

BYTEO {1 1 1 0 1 1 1 0} EEH=0P CODE
BYTE 1 N IMMED |ATE VALUE

Fig. 4-4. Immediate addressing in XOR N instruction.

In general, the immediate addressing mode is used for instruc-
tions in the 8-bit Arithmetic and Logical Group discussed in the
next chapter,

EXTENDED IMMEDIATE ADDRESSING

When the instruction is an immediate kind of instruction, but
16 bits of immediate data are required, the instruction format is
of the “extended” immediate kind. The extended addressing mode
is used in only a few instructions in the 16-Bit Load Group of in-

43



LD IY, NN LOAD 1Y WITH VALUE N

BYTEO f1 1 1 11101 FDH} OP CODE

BYIEL [0 0 1 0.0 0 0 1] 2

BYTE 2 N LS BYTE } 16-BIT IMMED IATE VALUE
BYTE 3 NMS BYTE

Fig. 4-5. Extended immediate addressing in LD 1Y, NN instruction.

structions. An example would be the instruction LD IY,NN which
is shown in Fig. 4-5. Note that the first two bytes comprise the oper-
ation code, and that the next two are the immediate data itself. LD
1Y,NN loads the 16 bits of immediate data in bytes two and three
of the instruction into the IY register. The condition-code bits are
not affected. As in the case of all 8080 16-bit data, the data is
grouped least significant byte followed by most significant byte.
The instruction LD IX,123FH would load the IX register with
123FH and would appear as shown in Fig. 4-6.

LD IX,123FH
BYTEG |11 011101 0P CODE Fig. 4-6. Extended immediate
BYTEL [0 0 1 00 0 0 1 addressing data arrangement.
BYlE2 |0 0 1 1 1 1 1 1] 3FH
BYTE3 J0 0 0 10 0 1 Of 12H

REGISTER ADDRESSING

In the register addressing mode, one or more of the CPU registers
is addressed by the instruction. The instruction format would con-
tain a field(s) which would specify which CPU register(s) was to
be utilized in performing the instruction. Examples of this kind of
addressing would be the RL R and AND R instructions.

The RL R instruction format is shown in Fig. 4-7. The least sig-
nificant 3 bits of word 1 of the 2-byte instruction is a 3-bit field that
specifies one of the general-purpose CPU registers A, B, C, D, E, H,
or L. This instruction takes the contents of register R and shifts it
left one bit position. The most significant bit of the register is shifted
into the carry, while the previous contents of the carry are shifted
into the least significant bit position of the register. The condition-

RL R ROTATE LEFT THROUGH CARRY REGISTER R

BYTED
BYTE 1

—

CBH = OP CODE
00010, = OP CODE
R = CPU REGISTER CODE

oo
Ll 11

o f
Of
=2 £l
=

Fig. 4-7. Register addressing in RL R instruction.
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code bits are set according to the results of the shift. Valid values
for the R field of the instruction are as follows:

R Register Shifted

000

001

010

011

100

101

111

Note that all bit permutations are possible except 110.. If 110,

were to be specified in this instruction, the instruction would become

another kind of addressing mode, Register Indirect Addressing and

would shift an external memory location rather than a CPU register.

Strictly speaking, the seven registers that may be specified result in

seven unique instructions, which could be viewed as seven Implied
Addressing instructions.

The AND R instruction is shown in Fig. 4-8. Here the instruction

is a one-byte instruction (because it was an 8080 one-byte instruc-

>PrImonNnw

AND R LOGICAL AND OF REG ISTER R AND ACCUMULATOR

BYiEo [10 1 0 0] R ] 10100, = 0P CODE
R « CPU REGISTER CODE

Fig. 4-8. Register addressing in AND R instruction.

tion) with the least significant three bits of the byte specifying the
register to be used in the instruction. The coding of the registers is
identical to the coding used in the RL R. AND R takes the contents
of the specified R register (A, B, C, D, E, H, or L), logically
ANDs it with the contents of the A register, and puts the result
back into the A register. The condition codes are set on the result
of the aNping operation. As an example, the instruction shown in
Fig. 4-9 would anp the contents of the D register with the A reg-
ister contents and put the results in the A register.

AND D

BYTEC |1 0 1 0 0]0 1 0] 10100, =OP CODE
010, = CODE FOR D REGISTER

Fig. 4-9. Register addressing example.
Instruction groups that utilize this addressing mode would in-

clude the 8-Bit Arithmetic and Logical, 16-Bit Arithmetic, Rotate
and Shift, and Bit Set, Reset, and Test groups.
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REGISTER INDIRECT ADDRESSING

Instructions in this group include the original 8008 instructions
that utilized the H and L register pair { High and Low) as a mem-
ory address pointer. In the 8008, data in memory could only be ad-
dressed by the HL pointer. The 8080 added the capability to use
register pairs B,C and D,E as pointers and also added the capabil-
ity of Extended Addressing, where each memory location could be
individually addressed. Register Indirect Addressing is a detriment
where data must be addressed in random (noncontiguous) memory
locations. When data is grouped in contiguous blocks, such as tables
or strings, however, accessing data by the pointer method is some-
what more efficient. The reason for the inefliciency in accessing
random memory locations is that the pointer register must be loaded
with the address of the new byte of data to be accessed before each
instruction of this kind is executed. Access of contiguous data is
made simpler by instructions that automatically increment and dec-
rement by one the register pairs used as pointers. The two proce-
dures for accessing blocks of random and contiguous data are shown
in Table 4-1, along with the relative times. Note that the examples
are for illustrative purposes only to point out the deficiencies in
register indirect addressing; the Z-80 has more efficient ways to ac-
cess data and they will be described later in this chapter.

Table 4-1. Data Access Using Register Indirect Addressing Charts

CALL &RTN

THIRD DATA BYTE

FIRST DATA BYTE
SECOND DATA BYTE
FIRST DATA BYTE THIRD DATA BYTE
FOURTH DATA BYTE

SECOND DATA BYTE

FOURTH DATA BYTE LAST DATA BYIE

RANDOM ACCESS SEQUENTIAL (CONTIGUOUS) ACCESS

o

1, LOAD DATA POINTER WITH ADDRESS OF . LOAD DATA POINTER WITH START OF DATA,
NEXT DATA BYTE {5 UNITS), . LOAD BYTE USING REGISTER INDIRECT

2. LOAD BYTE USING REGISTER INDIRECT ADDRESSING (3,5,
ADDRESSING (3.9, . PROCESS DATA BYTE (X),

3, PROCESS DATA BYTE (X). . BUMP REGISTER POINTER BY 1(3),

4, DONE? IF NOT, GO TO 17, . DONE? IFNOT,GOTO 2(7.

5, DONE, . DONE,

X + 15,5 UNITS/BYTE +13.5UNITS/BYTE

~

DOV B A
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LD A, {BC) LOAD ACCUMULATOR
Fig. 4-10. Register indirect addressing WITH LOCATION POINTED 70 BY

in LD A,(BC) instruction. CONTENTS OF B.C
BYIE0 {0 0 0 0 1 0 1 0] oaH=0PCODE

Examples of the instruction format for this way of addressing are
shown for an LD A,(BC) instruction (Fig. 4-10) and an INC (HL)
instruction (Fig. 4-11). The LD A,(BC) is a one-byte instruction
that loads the contents of the memory location pointed to by regis-
ter pair BC into the A register. No condition codes are affected.
The INC (HL) instruction increments the contents of the memory
location pointed to by the HL register pair by one. The condition
codes are set on the results of the increment.

. . . e . INC (HL} INCREMENT LOCATION
Fig. 4-11. Register indirect addressing POINTED TO BY CONTENTS OF HL

in INC (HL) instruction. BYIEO [0 0 1 1 0 10 0] 3 -0pcoDE

When register indirect addressing is employed, the register pairs
utilized as pointers hold the memory address as a 16-bit address as
one would expect:

Register Most Significant Least Significant
Pair Byte Byte
B,C B C
D,E D E
H,L H(igh) Liow)
SP SP bits 15-8 SP bits 7-0

Register indirect addressing is primarily used for 8008 compatible
instruction groups such as the 8-Bit Load, 8-Bit Arithmetic and
Logical, and Rotate-Shift groups.

EXTENDED ADDRESSING

The extended addressing instructions hold the address of the data
in the instruction itself, in a fashion similar to many minicomputers
and larger machines. Although this means that the instruction word
is longer, all locations in memory can be addressed directly, and
this mode is many times called direct addressing. The format of
this kind of addressing is shown for an LD A,(NN) instruction and
an LD (NN),HL instruction.

The LD A,(NN) is a classical computer instruction shown in
Fig. 4-12. Bytes 1 and 2 of the instruction specify a location in
memory. The 8-bit contents of this location are loaded into the
accumulator. No condition codes are affected. Byte 1 of the address
is the least significant byte, while byte 2 is most significant.
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The LD (NN),HL instruction is an extended addressing instruc-
tion that does the opposite of the first example. It takes the contents
of register pair H,L and stores it into the memory location specified
in bytes 1 and 2 of the instruction (see Fig. 4-13). Just as in all
instructions like this, the address of the memory location is ordered
the least significant byte (byte 1) followed by the most significant

LD A, (NN) LOAD ACCUMULATOR
WITH CONTENTS OF LOCATION NN

BYTEO |0 0 1 1 1 0 1 0] 3AH=0PCODE

BYTE 1 Nisayre 16-BIT
BYTE 2 Nms BYTE ADDRESS

Fig. 4-12, Extended addressing in
LD A,{NN) instruction.

byte (byte 2). The contents of the L register are stored in memory
location NN and the contents of the H register are stored in memory
location NN+1. An interesting thing to note about instructions like
these that move data from CPU registers to memory is that Zilog
chose to refer to them as LDs or Loads, when the usual mmemonic
is ST for Stores. This classification may be rather confusing until
one has worked with the mnemonics for some time.

LD {NN), HL LOAD LOCATION
NN WiTH CONTENTS OF H,L

ByfE0 [0 0 1 0 0 0 1 0] 2M=opcooe Fig. 4-13. Extended addressing in LD
BYTE 1 Nis BYIE 16-BIT (NN),HL instruction.
BYTE 2 Nums BYTE ADDRESS

Note that the 16-bit address in the instruction can address 26 or
65,536 memory locations. The size of the address field in this instruc-
tion format together with the 16-bit width of the register pairs are
the primary limitations to the size of external memory that can be
employed without special memory banking schemes. Extended ad-
dressing is used primarily for instructions in the 8- and 16-bit Load
groups.

MODIFIED PAGE ZERO ADDRESSING

This addressing mode is used only for one instruction, the RST P
or Restart Page Zero instruction. The effect of this instruction is to
cause a branch to one of eight page 0 locations after pushing the
current contents of the program counter into the stack. Page 0 in
the Z-80 as in other computers is defined as the area of external
memory that can be addressed in 8§ bits. Since 2% = 256, memory
locations O through 255 constitute page zero. The format of the
RST P is shown in Fig. 4-14. The T field in the instruction is three
bits wide. Depending on the configuration of bits in the T field, a
branch may be made to locations 0H, 8H, 10H, 18H, 20H, 28H,
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RST P RESTART TO LOCATION P

BYE [1 1] T J1 171] u,mi,-opcode

Fig. 4-14. Modified page zero O0H
addressing in restart instruction. 08H

,_.
£
~ o s W o)

30H, or 38H as shown. This instruction is discussed more fully in
the next chapter.

RELATIVE ADDRESSING

Relative addressing is primarily used in minicomputers or micro-
computers to shorten instructions and reduce the amount of memory
that programs occupy. If direct (extended) addressing is used to en-
able addressing all of memory, the address portion of the instruction
is two bytes long (16 bits can address 64K ). In both page zero and
relative addressing, the address portion of the instruction is one byte
long, reducing the instruction size from three bytes (op code plus
address) to two bytes. Page zero addressing allows addressing only
of page zero; relative addressing allows addressing of 256 memory
locations grouped around the current instruction. Fig. 4-15 shows
how this scheme is implemented. The second byte of the instruction
is a signed value of —128; to +127,, (10000000, to 01111111.).
When this value is added to the current contents of the program
counter, a memory location —126 to +129 bytes away is addressed
since the program counter points to the instruction after the relative
addressing instruction. As the current instruction moves through

8YTE0 0P CODE
BYIE1 DISPLACEMENT VALUE ~12819 T0 +12714

MEMORY
CURRENT ~1263 LOCATIONS BACK
INSTRUCTION FLS:&NG

LOCATION +12975 LOCATIONS FORWARD

Fig. 4-15. Relative addressing.
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memory, the block of memory that can be addressed moves (or
floats) along with the current instruction. The premise for this man-
ner of addressing is that in most cases it is sufficient to address mem-
ory in the immediate area of the current instruction; most programs
will operate on data near the current instruction.

Relative addressing on the Z-80 is used only for the Jump Group
of instructions, allowing conditional and unconditional jumps back
up to 126 locations or forward 129 locations from the current in-
struction. An example of relative addressing for a jump is shown
in Fig. 4-16.

JR Z,E JUMP RELATIVE IF ZERO

28H = 0P CODE

VALUE = 1010 = AH

LOCATION 0300H

0301H

pg ——————2= 0302H
INSTRUCTION WILL JUMP TO 03024 + AH = 030CH

IF ZERO FLAG SET OR WiLL EXECUTE NEXT
INSTRUCTION AT 03024 IF NOT SET

olo

0 090
0 01

@{e

101
00 1

Fig. 4-16. Relative addressing in JR Z,E instruction.

INDEXED ADDRESSING

Indexed addressing is an addressing mode that permits using the
two index registers in the Z-80, IX and IY. Many instruction groups
permit using the indexed addressing mode and it is one of the most
powerful features that the Z-80 offers. The format of this addressing
mode is shown in Fig. 4-17. The op code of the instruction is in
bytes 0 and 1; while the third byte holds an 8-bit signed displace-
ment of —128,, through +127,,. This displacement is added to the
contents of the specified index register IX or IY to determine the
effective address of the memory operand.

8YTED OP CODE

BYTE 1 0P CODE

BYTE 2 D 16-BIT SIGNED VALUE -128 TO +127m
(BYTE 3) (VARIES OR NONE)

EFFECTIVE ADDRESS = {IX) + D OR
(Y} +D

Fig. 4-17. Indexed addressing.

For example, consider the instruction LD (IY + D),N that uses
the IY index register. This is shown in Fig. 4-18. The LD (IY + D),N
loads (stores) the immediate value N into the memory location
specified by the effective address. If the contents of IY are 1003H
(the index registers are 16-bit registers), an LD (IY + D),N with a
displacement field of 40H will store N into memory location 1043H.
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The indexing operation is powerful because many programs must
have the ability to process tables or lists of data in memory. Ex-
amples of the use of indexing are provided in section II. Instruction
groups using the indexed addressing mode are the 8-Bit Load, 8-Bit

LD (1Y + D), N LOAD LOCATION (1Y + D) WITH VALUE N

BYTE0

11111101 .

BYIET [0 0110110 OP CODE

BYIE2 {01 000000 D = 40H

BYTE 3 N VALUE TO BE STORED
(1Y) = 1003H
D= 40H

EFFECTIVE ADDRESS = 1043H

Fig. 4-18. Indexed addressing example.

Arithmetic and Logical, Rotate and Shift, and Bit, Set, Reset, and
Test Groups.

BIT ADDRESSING

The last addressing group is the bit addressing group. Bit address-
ing is used in conjunction with the previous addressing modes to
provide testing, setting, or resetting any one of the 8-bits in an
operand. These operations would have to be performed by as many
as three instructions in the 8080 or other computers. An example
of this is provided for the SET B,(IX + D) instruction shown in
Fig. 4-19. The SET instruction sets a specified bit, and in this case
the address of the byte containing the bit to be set is given by
(IX+ D), an indexed addressing operation. The bit specified in the
B field of the instruction will be set after the instruction has been
executed. No condition codes are affected. The bit to be set is as
follows:

B Field Bit to be Set
000 XXXXXXX1
001 XXXXXXTX
010 KXXXXTIXX
011 XXXXTXXX
100 XXX THXXXX
101 XX TXXXXX
110 XIXXXXXX
111 TXXXXXXX

Other examples of the bit addressing mode are shown in Fig. 4-20,
which shows the “before” and “after” condition for various SET B,R
instructions specifying a bit set for CPU register C.

51



Chart 4-1. 7-80 Addressing Modes

——«l———~ 16-B1T LOAD -——-t-— 8-BIT LOA ——{

EXCHANGE, BLOCK
TRANSFER, SEARCH

GENERAL PURPOSE  8-BIT ARITHMETIC
AR ITHMET 1C~F—AND LOG ICAL————

T—>uzwwn

r-
4
O =P nNIFnnNT
T >

PUSH IY
POP QO
POP IX
POP Y

EX DE,HL
EX AFAF’
EXX

EX (SP),HL
EX (SP),IX
EX (SP)1Y
LD}

LDIR

LDD

LDDR

CPI

CPIR

CcPD

CPDR

ADD A,S
ADC A'S
SUB S
SBC AS
AND §
ORS

XOR S
cers
INC S
DEC S
DAA,

=)
o
=

!_

PEKE
ZokE

=iz
EXS)
~

!

B s | REGISTER | o
g =E=kl INRECT (X o 25
- mZwm 2 Zw N
EEHES Eegae
EEnEd=gusEssE25
e e e ®
e .
____!‘_ [
e e o
e o o
[
o
[
o
e °
-] (-]
o ©
R
o
-]
L]
[
-]
(-]
©
e
°
[
-8
-]
[
8.
°
L]
2
L]
o
-] o
° °
(- -]
o o
(]
(-4
e
-]
- o o °
=.: (-] L]
% o °
o -2 ) -]
é e._© L]
o ) e
o °
- °
°
-4

NOTES
S 1S ADDRESSING MODE TYPE
R ISREGISTER A, B, C, D, E, H, ORL

N IS 8-BIT IMMEDIATE VALUE
A IS A REGISTER

| 1S | REGISTER
R IS R REGISTER

R REGISTER
DD IS BC, DE, HL, SP

NN iS ADDRESS FIELD

QQ IS BC, DE, HL, AF

SEE CHAPTER 5 FOR DETAILS

NOTE-~INSTRUCTIONS AND ADDRESSING MODES USED IN
THE 8080 ARE DESIGNATED BY A SINGLE LINE UNDER THE
DOT, THOSE USED IN THE 8008 AND 8080 ARE DESIGNATED
BY A DOUBLE LINE UNDER THE DOT.

52




Chart 4-1. Z-80 Addressing Modes—cont

ADD HL,SS
ADC HL.SS
SBC HL.SS
ADD IX.PP
ADD IY.RR
INC SS
INC IX
INC 1Y
DEC SS
DEC X
DEC 1Y
RLC A
RLA

RRC A
RRA

RLC S

RL S

RRC S

RR S
SLA'S
SRA'S
SRLS

RLD

RRD

IT BR
£7 BR
ES BR

16-BIT ARITHMETIC

T— ROTATE AND SHIFT

BIT, SET

JUMP—TRfSET

B
S|
R

-

C.NN

oMoz

13

NCE

RZE

IR NZE

| DI NZE
CALL NN

CALL CC,NN

RET

RET CC

RETI

RETN

| _RSTP

IN AN

IN R.{C)

INI

INIR

P
JP
JR
JR
IR

# | REGISTER
o =228 oweeT [Eo 2 s
Sa=Za2 R ]
8 = RS oo é &S -
EEGERE B G EREES NOTES
o DD IS BC, DE, HL, SP
L]
o
[
o
o
o
]
o
-]
[ ]
2
iy
;_.==
s
- e o °
o o [
o o o
e @ o
e o @
o o [
® © (-]
-]
L]
e O L)
o o o
o o o
° Y ® NN ISADDRESS FIELD
o
o E IS DISPLACEMENT FIELD + 2
]
-]
L]
L]
-]
o
o
. i
é
@
o
s P 1S 00H, OBH, ETC
o N IS 8-BIT IMMEDIATE VALUE
e € IS C REGISTER
o
-]
e
-]

NOTE--INSTRUCTIONS AND ADDRESSING MODES USED IN
THE 8080 ARE DESIGNATED BY A SINGLE LINE UNDER THE
DOT, THOSE USED IN THE 8008 AND 8080 ARE DES IGNATED
BY A DOUBLE L INE UNDER THE DOT,

e o0 O
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SET B,{IX +D) SETB OF LOCATION (IX + D)

BYIEG [1 1 0 1 1 10 1
BYIE1 [1 1 00 10 11 0 CODE

BYTE 2 D D VALUE

vies [1 1] 8 11 0f u,mo,-o0p cone

B =BIT CODE 0-7

Fig. 4-19. Bit addressing/indexed addvessing in SET B,(I)X + D) instruction.

As the combinations of addressing modes employed in the various
instructions can be almost overwhelming on first encounter, Chart
4-1 provides a reference chart for instruction groups. The chart fol-
lows the same notation as has been used in the above description

REGISTER € INSTRUCTION
BEFORE AFTER
fo1 010000} {01 010001} SET 0,C
¥
Jo o o000 0 0} [0001 000 0] SET 4,C
£
1101111 1) 111171171 1]) SET 5,C
%)
[boo10010] [footoo10] sEmrc
¥
% = BIT SET

Fig. 4-20. Bit addressing example.

and that will be used in a discussion of the various instruction meth-
ods in the next chapter. Instructions and addressing modes used in
the 8080 are designated by a single line under the dot. Those used
in the 8008 and 8080 are designated by a double line under the dot.
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CHAPTER 5

Instruction Set

The table of addressing modes given in Chapter 4 cross-references
Z-80 instructions with its addressing modes. For discussion pur-
poses, the instruction repertoire of the Z-80 may be classified into
the groups shown in Chart 4-1. These groups are:

8-Bit Load

16-Bit Load

Exchange, Block Transfer, and Search
. 8-Bit Arithmetic and Logical
General-Purpose Arithmetic and CPU Control
. 16-Bit Arithmetic

. Rotate and Shift

Bit Set, Reset, and Test

Jump

Call and Return

Input and Output

O ©O®N® U

[

8-BIT LOAD GROUP

The 8-Bit Load Group is shown in Table 5-1. About half of the
instructions in this group load an 8-bit value into a CPU register
from another CPU register, immediate value in the instruction, or
memory location. The other half of the instructions store an 8-bit
value from a CPU register or immediate value into a CPU register
or memory location. In all cases, the source register remains un-
changed after the transfer.

Four of the instructions simply transfer the contents of the I and
R registers into the current A register and vice versa. LD A1 loads
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the A register with the contents of the interrupt Vector Register I.
LD AR loads the A register with the contents of the Memory Re-
fresh Register R. LD LA and LD R,A do the reverse. No condition
codes are affected for the latter two. The former two set the
condition codes as shown. These four instructions do not exist in
the 8080 or 8008 as neither microprocessor had the I or R registers.

The LD R,S instructions load the specified CPU register in the
R field with the contents of another CPU register (LD R,R’), an
8-bit immediate value (LD R,N), or an 8-bit value from a memory
location [LD R,(HL); LD R,(IX+D); LD R,(IY+D)]. None of
the condition-code bits are affected after the load. LD S,R does the
opposite of LD R,S, that is, the contents of a CPU register R is
transferred to a memory location using either an HL register pointer
method of addressing [LD (HL),R] or indexed addressing [LD
(IX+D),R or LD (IY+D),R]. This is in fact a “store” kind of in-
struction (called a MOV in the 8080 and 8008). LD S,N is similar

LDAI LD AR
] CPU A REG | [ CPU A REG |
+8BITS +8BITS
| CPU | REG | | CPU R REG ]
Lb 1A LDR,A
| CPU | REG ] ] CPU R REG ]
T8BITS L8BITS
I CPU A REG | | CPU A REG ]
LDR,S TYPE
LD B.H LD C,(HL) {HL) = 10014
[ CPU B REG ] | CPU C REG
¥ 8BITS HEMORY  Vgars
| CPU H REG ] 1000H
1001H

LD S,R TYPE (STORE)

LD X +30H),D  {IX) = 1014H LD (DE}, A (STORE) (DE} = 2005
| CPU D REG ] ] CPU A REG ]
8 BITS
MEMORY MEMORY 8 BITS
1043H 2004
1084 H 2005
2006

Fig. 5-1. Eight-bit load group examples.
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except that an immediate value is stored into a memory location
[LD (HL),N; LD(IX+D),N; or LD (IY+D),N]. None of the con-
dition codes are affected by the load (store).

The last instructions of this group load or store the A register
only with a memory location specified by register pointers BC, DE,
or by an extended (direct) addressing. A is loaded by LD A,(BC);
LD A,(DE); or LD A,(NN) and stored by LD (BC),A; LD (DE),
A; and LD (NN),A. No condition codes are affected.

Examples of this group are shown in Fig. 5-1 which illustrates the
various addressing modes and instruction types.

LD HL,1025H
L0 HL, 10258 [0 01 0]0 0 0 1
INSTRUCTION 550
10H
8BIT§
CPU H REGISTER 88ITS
CPU L REGISTER
LD (NN, IX
wmnix [1TT01 1101
INSTRUCTION [0 0 10 0 0 1 0
Z0H
T } MEMORY ADDRESS 5020H
HIGH ORDER IX REGISTER
LOW ORDER
88ITs) T-8BITS
MEMORY
5020H
S021H
LD SPHL
CPU W REGISTER
CPU L REGISTER 881TS
STACK
POINIER HIGH ORDER 8 BITS
REGISTER LOW ORDER

Fig. 5-2, Sixteen-bit load group examples.

16-BIT LOAD GROUP

This group allows any register pair BC, DE, HL, or SP, or the IX
and IY registers to be loaded by an extended immediate instruction
(LD DD,NN; LD IX,NN; or LD IY,NN). See Table 5-2. Here a
16-bit immediate value in the instruction is loaded into the selected
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register pair, IX, or IY. Any register pair IX or IY can also be loaded
or stored directly (extended addressing mode) by LD DD,(NN);
LD IX,(NN); LD IY,(NN); LD (NN)HL; LD (NN),DD; LD
(NN),IX; or LD (NN),IY.

The contents of HL, IX, or 1Y can be transferred to the SP regis-
ter by LD SP,HL; LD SPIX; or LD SP,IY.

The remaining instructions in this group allow 16-bit register pairs
BC, DE, HL, or AF (A register and flags) to be pushed onto or
pulled from the stack. Fig. 5-2 shows examples of the use of these
instructions.

EXCHANGE, BLOCK TRANSFER,
AND SEARCH GROUP

The exchange instructions in this group allow various exchanges
of 16 bits of data between register pairs in the same set of registers
and exchanges between the two sets of registers (see Table 5-3).

CPU D REGISTER
E

oo

BITS R BITS Fig. 5-3. EX DE, HL instructions.

CPU H REGISTER
L

EX DE,HL simply exchanges the contents of register pairs DE and
HL in the current set of registers as shown in Fig. 5-3. EX AF,AF,
however, exchanges the contents of the A register and flag register
of the current set of registers and the inactive set of registers as
shown in Fig. 5-4. EXX swaps the contents of the current set of BC,
DE, and HL with the inactive set of BC’, DE’, and HL’ as shown
in the same figure. No condition codes are affected in any of the
above instructions. These instructions permit switching back and
forth between the two sets of CPU registers with one or two in-
structions.

ACTIVE CPU REGISTERS

A F
8 BITS B c 4 8BITS (EX AF,AFY
{EX AF,AFY ] £
H L
INACTIVE CPU REG!
CPU REGISTERS 48 BITS (EXX)
A, FI
B '
D' £
' L

Fig. 5-4. EX AF,AF’; EXX instructions.
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The three additional exchange instructions operate using the SP
register as a pointer to the stack area. The stack pointer is not af-
fected by execution of the instructions. Either HL, IX, or IY may
be exchanged with current top of stack by instructions EX (SP),HL;
EX (SP),IX; or EX (SP),IY. Examples of the three kinds of ex-
changes are shown in Fig. 5-5.

EX (SP), HL (5P} = 10251
CPU H REGISTER
L
MEMORY >
10254 {TOP OF STACK)
1026H (TOP OF STACK +1)
EX (SP}, IX (SP) = 2043H
IX HIGH ORDER
IX LOW ORDER
MEMORY >
2043H (TOP OF STACK)
20440 {TOP OF STACK +1)
EX (5P}, 1Y (SP} = 128AH
1Y HiGH ORDER
1Y LOW ORDER
MEMORY >
128AH (TOP OF STACK}
12884 (TOP OF STACK +1

Fig. 5-5. EX (SP) instructions.

LDI, LDIR, LDD, and LDDR are four block transfer instructions
that use register pairs BC, DE, and HL. All four instructions trans-
fer a block of data from one place in memory to another. The block
may be 1 to 64K bytes. Register pair BC must be preset with the
number of bytes to be transferred, register pair HL. must point to
the starting address of the source block, and register pair DE must
point to the starting address of the destination block. Instruction
LDI performs the following actions when executed:

L. A byte is transferred from the source block to the destination
block using registers HL. and DE as pointers.
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2. The HL and DE registers are incremented by one to point to
the next byte of each block.

3. The byte count in BC is decremented by one.

4. If (BC) 5 0, the P/V bit in the flags is set.

Instruction LDD performs the same functions as LDI except that
the HL and DE registers in step 2 are decremented by one (LDI =
Load and Increment, while LDD = Load and Decrement). LDI,
therefore, transfers data from block start to block end while LDD
transfers data from block end to block start. The action of LDI and
LDD are shown in Fig. 5-6.

1000H
MEMoRY | 100 <— (HL) AFTER LDD
SOURCE {1002 <+~ (KL} BEFORE INSTRUCTION
1003H ~<— (HL) AFTER LDI
10044
8BITS
2000H
MEMORY | 2001H ~+— (DE} AFTER LDD
DESTINATION | 20021 ~— (DE) BEFORE INSTRUCTION
2003 ~— (D) AFTER LD
200H
LD! ACTIONS

1. TRANSFER BYTE FROM 1002H T0 2002H
2. ADD 170 HL TO POINT TO 1003H
3, ADD 170 DE TO POINT TO 20034
4. SUBTRACT 1FROM BC (BYTE COUNT
5. GO ON TO NEXT INSTRUCTION
LDD ACTIONS
1, TRANSFER BYTE FROM 1002+ TO 2002+
2. SUBTRACT 1 FROM HL TO POINT TO 10014
3, SUBTRACT 1 FROM DE TO POINT TO 2001H
4, SUBTRACT 1FROM BC (BYTE COUNT)
5. GO ON TO NEXT INSTRUCTION

Fig. 5-6. LD! and LDD instructions.

LDIR and LDDR perform identical functions to LDI and LDD
with a supplemental action. If the byte count is not zero (P/V flag
set), then the instruction continues transferring data until the byte
count is 0. This means that there will be N executions of an LDIR
or LDDR, where N is the initial value of the BC register. LDIR
and LDDR are automatic transfers of a block of data while LDI and
LDD are “semi-automatic,” requiring a separate test of the P/V flag
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for completion. Both are useful, as will be demonstrated in section II.
Fig. 5-7 shows the actions of LDIR and LDDR.

The search instructions CPI, CPIR, and CPDR are similar to the
block transfer instructions in that a block of memory locations is
involved and these memory locations are scanned from start to end,
or from end to start. The A register holds an 8-bit search key that
can be 0 to 255. BC, as before, holds a byte count of 1 to 65535 and
HL holds the starting address of the block (CPI or CPIR) or end-

1000H o (HLJ AT START (LDIR]
J00mH LDIR
SOURCE { 10024
BLOCK | 10031 $ ook
10024 <— (HL) AT START (LDDR)
20144 <— (DE) AT START (LDIR)
MEMORY 201H YO
DESTINATION { 2016
2017H 4Loor
20184 o (HUI AT START (LDDR)
LDIR ACTIONS
1. TRANSFER BYTE
Z ADD1TO HL THESE ACTIONS REPEATED
3. ADD 170 DE NESEACT F
4, SUBTRACT 1FROM BC INT*% IN”‘?EEEYN #
5 IF(BCH§ 0GOTO STEP 1

6, GO ONTO NEXT INSTRUCTION
LDDR ACTIONS
. TRANSFER BYTE
. SUBTRACT 1FROM HL
. SUBTRACT 1 FROM DE
. SUBTRACT 1 FROM BC
. 1F(BC) § 06O TO STEP 1
. GO ON TO NEXT INSTRUCTIONJ

Fig. 5-7. LDIR and LDDR instructions.

THESE ACTIONS REPEATED
N TIMES WHERE N = #
INBC INITIALLY

[ I - Xy

ing address of the block (CPD or CPDR). When a CPI instruction
is executed, the contents of the memory location addressed by HL
is accessed and compared to the A register. If the memory byte
equals the A register, flag Z is set in the condition codes. The byte
count in BC is then decremented and the pointer in HL is incre-
mented to point to the next memory location. CPD functions in the
same manner except that the pointer in HL is decremented. CPI
and CPD will search a block for a given byte semi-automatically
as a test of the Z flag must be made after every execution of CPI
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or CPD to determine whether the byte was found. Fig. 5-8 shows
the actions of CPI and CPD.

CPIR and CPDR are similar to CPI and CPD except that they
are fully automatic. If the byte count in BC is not equal to zero at
the end of execution of the instruction, and the current memory byte
does not equal the key value, the instruction is again executed for
another comparison. The instruction is continually executed until
either the byte count in BC is zero or until a memory location
matches the key, as shown in Fig. 5-9.

30054 -t HL AT START (CP})
30064 e HIAFTER CP

30074
30084
300
300AH
300BH HL AFTER CPD

300CH g HL AT START (CPD}

CPI ACTIONS

1. READ NEXT BYTE

2, ADD1TOHL

3, SUBTRACT 1FROM BC

4, COMPARE BYTE TO (A) AND SET FLAGS
5. GO ON TO NEXT INSTRUCTION

CPD ACTIONS

1. READ NEXT BYTE

2. SUBTRACT 1FROM HL

3, SUBTRACT 1FROM BC

4, COMPARE BYTE TO {A) AND SET FLAGS
5. GO ON TO NEXT INSTRUCTION

Fig. 5-8. CPI and CPD instructions.

8-BIT ARITHMETIC AND LOGICAL GROUP

The 8-bit arithmetic and logical instructions are used to add, sub-
tract, AND, OR, exclusive OR, or compare two 8-bit operands, one
of which must be in the A register. The second operand may be an
immediate operand, may be in another CPU register, or may be in
memory and referenced by HL register indirect addressing or by
indexed addressing. The two operands are obtained, the designated
function is performed, and the result goes into the A register. The
condition codes are set as presented in Table 5-4.

There are two kinds of adds, ADD A,S and ADC A,S. In the first,
the contents of the A register and the second operand are simply
added and the results put into A; in the second, the contents of the
A register, the second operand, and the current state of the carry
flag are added and the results are put into the A register. The second
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1IAAH a—HL AT START (CPID)
11ABH
TIACH s——HL AT END (CPDD)
1ADH 334
BLOSCE*:\ ggHED T1AEH a—~H_ AT END {CP1D)
BE 11AFH
11BOH
11BIH
L1182 |-o-—~HL AT START (CPDD)
AT START
(HL) = 11AAH FOR CPIR 11B2H FOR CPDR
(BC) =9
(Al =33
CPID ACTIONS
1. READ NEXT BYTE
Z ADDITO HL THESE ACTIONS
3, SUBTRACT 1FROM BC REPEATED FOUR
4, COMPARE BYTE TO (A) AND SET FLAGS | s
5, IFBC# OANDBYTE{ A TO STEP 1
6. GO ON TO NEXT INSTRUCTION ]
CPDD ACTIONS
1. READ NEXT BYTE
2, SUBTRA
UBTRACT 1 FROM HL THESE ACTIONS
3, SUBTRACT ! FROM BC oA e
4, COMPARE BYTE TO (A) AND SETFLAGS [ Lo
5. IFBC# OAND BYTE 4 A GO TO STEP 1
6. GO ON TO NEXT INSTRUCTION J

Fig. 5-9. CPIR and CPDR instructions.

add permits multiple-precision addition and is discussed in Section
II. Subtracts are analogous to the adds. SUB S subtracts the second
operand from the contents of the A register, while SBC A,S sub-
tracts the second operand and the current state of the carry from
the contents of the A register. The add and subtract instructions are
shown in three addressing mode examples in Fig. 5-10.

There are two additional instructions in this group, the INC S
and DEC S instructions. They increment or decrement the contents
of a CPU register (A, B, C, D, E, H, L.) or memory location by one
and set certain condition codes as listed in Table 5-4. As an immedi-
ate instruction makes no sense for this one-operand instruction only
register, register indirect HL, and indexed addressing modes are
permitted as shown in Fig. 5-11.

GENERAL-PURPOSE ARITHMETIC
AND CPU CONTROL GROUP

The instructions in this group are listed in Table 5-5. They are
all implied addressing instructions involving one or no operands.
Two of the instructions involve one operand, CPL and NEG. Both
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CPL and NEG operate on the contents of the A register. CPL ones-
complements the contents of the A register, changing all zeros to
ones and all ones to zeros, as shown in Fig. 5-12. NEG negates the
contents of the A register changing all zeros to ones and all ones
to zeros and adding one as shown in the figure. The effect of CPL
is to find the value —[(A)+1] and NEG to find the value —A, where
(A) is the previous contents of the A register. Condition codes are
set as shown in Table 5-5.

ADD A,B
[T} SBITRESUL

ALU

{ADD)

8BITS} Ysbirs

[CPUA Rig) [cPU 8 ReG )
SN

ADC A, {HLI
T 8-BITRESULT
ALU
(ADD WITH I HL ]
CARRY)
uns,_f: t—}sans
CPUAREG | [oy
&l MEMORY
L OPERAND
! |
SBC A,(IX + D)
[ J8-BITRESUT
ALU
(SUBTRACT L iX+D ]
WITH CARRY)

MEMORY
OPERAND

8BITS ‘ 8BITS
CPU. A REG [

Fig. 5-10. Add and Subtract instruction examples.

Two of the instructions in this group operate on the carry (CY)
flag of the condition codes. SCF sets the carry flag to a 1; CCF com-
plements the current state of the carry — a 1 is set to a 0, and a 0
is set to a 1. These instructions are useful in setting the carry prior to
arithmetic or shifting operations.

The NOP instruction does nothing and is used to “pad” a pro-
gram area or is implemented automatically by the Z-80 during a
HALT state to guarantee dynamic-memory refresh.
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INC D
instrucrion [0 0J0 T 01 0 o]

INC D ] lrsans
ALU

SPECIFIES {INCREMENT)
D
8BITS
CPU D REG

INC (HL) —j 8 8ITS

INC (HL)

00110100
INSTRUCTION | [ "
{INCREMENT)
| HL :
ABITS ]
MEMORY
T OPERAND
j
INC (1Y + D) _—}ssns
INC{IY +D)
INSTRUCTION |1 1 1 1 1 101 o
L2 lDO 1 02 {INCREMENT)
8
\ BITS T
| ¥ ] MEMORY
| OPERAND
v+

Fig. 5-11. INC and DEC instruction examples.

DI and EI disable or enable external (non-NMI) interrupts by
resetting or setting the interrupt enable flip-flops IFF1 and IFF2.
IM 0, IM 1, and IM 2 set interrupt modes 0, 1, or 2. The meaning

of the various modes is discussed in Chapter 7.

CcPL
(A BEFORE INSTRUCTION [1 0 1 1 0 1 1 6] (4
0s =15, | 1s-=0s
{A) AFTER INSTRUCTION |9 1 0 0 1 0 0 1] 73
NEG

(A} BEFORE INSTRUCTION Il 011011 0] (~74)

0s ~1s, | 1s-+=0s
01001001
+ 1
(A) AFTER INSTRUCTION [0 1 0 0 1 0 1 0] 74

Fig. 5-12. CPL and NEG instruction examples.

73



ruonjeiedo 8y} 4o j|nsal ayj o) Buipiodde paaye s) Bey = 9

‘umounun sp Bey == ¥ ‘4Jes Bey = | ‘jasas Bey = ( ‘paaye jou bey = @
:uoljejoN Bepd

‘doyj-diy Aued sy} sajedipus A

doy-diyy sjqeus jdniiajul sy sa1edipul 44

:$9jON
oLt 110 10 T epow
8 4 4 oL 1ot 1t elel|leo| e |e]e Jdnusul seg z wi
olt oo 10 L spow
8 z 4 1ot tot 1t oo |ole |ele jdnissgul yag EWI
oLl 000 1O 0 spow
8 [4 z 1oL oL 1L ol e  e|l o le e idnuajur ysg 0 Wi
14 L i L0 L1 1L | ® |0 ©® | ;0 L= ddi 13
14 L { Lo ot 1t ®| 6|6 ©®@ | |6 0> 44 ia
y L ! ottt otL 1o ®@lo || & |0 P3i|eY NdD LIvH
4 i L 000 000 00 ® | 6 ] ®© (6|0 uoljessdo oN dON
Bey Asted yog 4 L L LiL oLt 00 0fo01e] @& |©® ! L= AD 408
Bey
Auses yuswsidwo) 4 L i 1L til 00 x|ole| e je |1 AD = AD 420
(uswsjduiod 00t 000 10
$,0Mi) "3 ajebaN g z z 1oL tol 1L Tt A Tl s v—0->V BEN
(suawe|dwod s,3u0)
Jojejnwndoe
{uswajdwon 4 | L Lttt 10t 00 tjt]le] @ |e|e y->v 1dD
spuesado psq
poyoed yim
$oe44QNS JO
ppe Buimojjoy
paq payoed
Jojejnwnooe oJul JUdjU0d
ssnlpe Jewpaq v t L tiroot oo | $le |t da || | vesusauop vva
sjuswWwo?) sojeis 1 | sepho w sothg oLz £bS 9L H{N|s|ad]lz]> uoyesadg s1uowauy
jo ‘oN jo ‘oN jo ‘oN 3pos-d0 sBeyd sjoquiisg

sdnoig) jouo)) N4 pue SRAUNIITY asoding-[eIauss) ‘¢-¢ ofqe L

74



The last instruction in this group is the DAA instruction. DAA,
or Decimal Adjust Accumulator, allows the Z-80 to perform binary-
coded decimal (bed) addition or subtraction. (The 8080 can per-
form only bed addition automatically.) The DAA is performed di-
rectly after an ADD, ADC, INC, SUB, SBC, DEC, or NEG and
changes the binary results of the operation into bed results. Bed
addition will be discussed in detail in Section II.

ADD HL,SS

ool s Jiroot
——

Fig. 5-13. Sixteen-bit arithmetic
register encoding. 00 = BC

01 = DE

10 = HL

11 = SP

16-BIT ARITHMETIC GROUP

All of the instructions in this group operate on 16-bit double-
precision values in either register pairs BC, DE, or HL, or in 16-bit
SBC HL, SP

\
11 1\0 11
0 TJ1 1J0 0

0
1

1
0

+ 16 BITS
ALU

(SUBTRACT
WITH CARRY}

Icens} ‘ }léans
[ Nl % ]

I

ADD [X,1X

1 1 0\l 11
0 0Ji o1 o

l

ALY
(ADD)

01
01

’ T 6sirs
16BITS {SECOND OPERAND)

L X ]

Fig. 5-14. Sixteen-bit arithmetic instruction examples.
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CPU registers IX, IY, or SP. Increments and decrements of BC, DE,
HL, SP, IX, or IY can be performed by INC SS, INC IX, INC IY,
DEC SS, DEC IX, or DEC 1Y. The SS-type instructions increment
or decrement BC, DE, HL, or SP depending on the SS field of the
instruction as shown in Fig. 5-13. The remaining increment and
decrements are all implied addressing types.

Three of the instructions in this group permit adding, adding with
carry, or subtracting with carry. The contents of BC, DE, HL, or
SP can operate on the contents of the HL register with the result
going to the HL register. The condition codes are set as shown in
Table 5-6, and an example of the instructions is shown in Fig. 5-14.
ADD IX,PP and ADD IY RR permit addition of BC, DE, SP, or the
same index register to IX and IY, respectively. The condition codes
are set as listed in the table, and an example of the instruction is
shown in the figure.

ROTATE AND SHIFT GROUP

The instructions in this group include the 8080 (8008) instruc-
tions that rotated only the A register and new instructions to shift
A, B, C, D, E, H, or L. or a memory operand in just about every
possible shift configuration. Table 5-7 shows the rotate and shift
instructions.

RLCA ACTION

[P Y L 2
SHIFT LEFT ONE 8 BITS)

RLA ACTION

1YY MY ey
SHIFT LEFT ONE l“'] (9BITS)

RRCA ACTION
Toyoyry oy oy
SHIFT RIGHT ONE {8BITS)
RRA ACTION

Ty YAy oy
SHIFT RIGHT ONE
(9BITS)

Fig. 5-15. RLCA, RLA, RRCA, RRA instructions.
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RLD ACTION 4BITS

7 43 [0 7 7 43 0
A JUNCHANGED | ] ] ] ] MEMORY OPERAND
DR b S
4BITS 48ITS
RRD ACTION 4BITS
7 43 § 0 77 43 0
A [UNCHANGED] ] | ] ] MEMORY OPERAND
DR S
4BITS 4BITS

Fig. 5-16. RLD and RRD instructions.

RLCA, RLA, RRCA, and RRA rotate the A register only. The first
letter of the mnemonic stands for Rotate, the last Accumulator, and
the second the direction of the rotate, left or right. RLCA rotates
left with the most significant bit going into the carry (CY) and the
least significant bit position. RRCA performs a similar operation
with a right shift. RLA and RRA perform a nine-bit shift with the
previous contents of the carry shifting into the A register and the
bit shifted out from the A register going into the carry. All four
shifts are shown in Fig. 5-15.

Two shifts of this group RLD and RRD operate on the contents
of a memory location, addressed by register indirect addressing HL,
and the A register, and shifts four bits at a time. These two shifts
are implemented to facilitate bed operations, where each bed digit
is made up of four bits. If the reader considers bits 7-4 of the A
register or memory location bed digit position 0 and bits 3-0 bed
digit position 1, then these shifts are somewhat easier to follow.
RLD shifts the memory operandgep; into memory operand pepo and
memory operandgcpo into Apcpi. The previous contents of memory
operandgcep; are replaced by Apcp: as shown in Fig. 5-16. Instruc-

SRA S
Toxeoyevsewy0
OPERAND S| SHIFT RIGHT ONE
SIA S
et amtantmal)
SHIFT LEFT ONE a0 OPERAND
SRLM

Ty
0 —={"_SHIFT RIGHT ONE F=[cv]

Fig. 5-17. SRA, SLA, SRL instructions.
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tion RRD operates in the reverse direction as shown in the illustra-
tion. The condition codes are set as shown in Table 5-7.

The remaining shifts in this group operate either on CPU registers
or on a memory location addressed by register indirect HL, address-
ing or indexed addressing. Those with a mnemonic starting with
an R are rotates, and those with a mnemonic starting with an S are
arithmetic (SLA S, SRA S) or logical (SRL S). SLA S and SRA S
perform arithmetic left and right shifts. Arithmetic shifts sign-extend
the sign bit to the right on a right shift and sometimes retain the
sign bit on a left shift. The Z-80 SRA S does extend the sign bit on a
right shift as shown in Fig. 5-17, but does not retain it on a left shift.

RLCS . OPERAND
LN
SHIFT LEFT ONE
(8 BITS)

RLS OPERAND

NN N0

< SHIFT LEFT ONE ,
(9 BITS)

RRCS OPERAND

LWV Ve o Vi Y. Y\

u SHIFT RIGHT ONE ]—-r. {8 BITS)

RRM OPERAND

o~y
. SHIFT RIGHT ONE
98ITS)

Fig. 5-18. RLC, RL, RRC, RR instructions.

Any of the seven current CPU registers can be shifted when register
addressing is used with the R field specifying the register as shown
in Fig. 5-17. The condition codes are set as listed in Table 5-6. In-
struction SRL S performs a logical right shift with a zero going into
the sign bit position. Note that for all three shifts a zero is shifted
into the operand and that the carry is set by the bit shifting out of
the operand.

Shifts RLC, RL, RRC, and RR are rotate shifts performing either
an 8-bit shift (operand without carry), or a nine-bit shift (operand
with carry). RLC and RRC rotate in 8-bit fashion, while RL and
RR rotate in 9-bit fashion. All four shifts are shown in Fig. 5-18.
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BIT, SET, RESET, AND TEST GROUP

The instructions in this group set, reset, or test one of the eight
bits in a CPU register (A, B, C, D, E, H, or L.) or memory operand.
Register, register indirect, or indexed addressing may be used (see
Table 5-8). In all three types, the B field specifies which bit of the
byte is to be operated on as follows:

BIT B

NOOTA WN-~O
o
o]

1

BIT B,R tests the bit and sets the Z flag if the bit is a zero and
resets the Z flag if the bit is a 1. SET sets the indicated bit and does

SET 7,D

[07 01 1 1 1 1] DBEFORE INSTRUCTION

[T'101 111 1] DAFTER INSTRUCTION

RES 5, (HL)

| HL

MEMORY ™™ 57X X X X X

OPERAND
THIS BIT RESET
BIT 0,(1X + D)
BIT 0,(1X + D)
INSTRUCTION |2 01
. 1 T 1

10111
10010
D /|\‘ X ]

01Joo o110

[NE——
BIT 0 SPECIFIED
(X + D}

MEMORY
OPERAND X X X X X X xon

SETZ IFBIT=0
RESETZ IFBIT =1

Fig. 5-19. SET, RES, BIT instruction examples.
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JP 107AH
JP107AH

INSTRUCTION [ 1. 1 0 0 ¢ 0 11
7AH
10H
1P NC, 107AH
AP 107AH T1Jo 1 0J01 0
TAH 010, = JUMP ON
10H NO CARRY

Fig. 5-20. JP and JPCC instruction examples.

not change the condition codes, while RES resets the indicated bit
and does not change the condition codes. Fig. 5-19 shows the three
kinds of bit instructions and examples of their use with various ad-
dressing modes.

JUMP GROUP

The instructions in the jump group are shown in Table 5-9. Basi-
cally, these can be divided into jumps, calls, and returns. Jumps
cause a transfer to another location in memory and do not save the
contents of the program counter to mark where the jump occurred,
Calls perform the same action as a jump, but save the PC in the
memory stack so that return may be made to the instruction follow-
ing the call. Returns effect the transfer back to the instruction fol-
lowing the call by popping the stack and restoring the contents of
the top of stack to the program counter. Calls and returns are used
for subroutine processing. Subroutines are segments of code ranging
from several instructions to hundreds of instructions that are called
from many parts of a program. This avoids redundancy in writing
the subroutine code many times throughout the program and saves
memory and development time.

Two of the jump instructions JP NN and JP CC,NN exist in the
8080 and 8008 in extended addressing and are shown in Fig, 5-20,
The NN field is the jump address. JP NN jumps unconditionally to
the address, while JP CC,NN jumps to the address if the conditions
CC are met. The encoding of the CC field is as follows:

CcC Condition

000 Z=20 (nonzero)
001 Z=1 (zero)

010 C=0 (no carry)
011 C=1 (carry)

100 P=0 (parity odd)
101 P=1 (parity even)
110 S=0 (positive)
111 S=1 (negative)
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JRE

R 103AH

JR 103AH INSTRUCTION 6 0 0 1 1 ¢ 0 0 | 1000H

\\ 38H 1001H

PCw-NEXT INSTRUCTION ) 1602H

DISPLACEMENT FIELD = 103AH - PC
= 103AH - 1002
=38H
Fig. 5-21. JR E instruction example.

In addition to extended addessing, the Z-80 allows register indirect
HL and indexed addressing for the JP NN instruction.

The remaining jumps are all of the relative addressing kind. JR E
emulates the former jump. JR E is an unconditional relative jump
to the effective address and is shown in Fig. 5-21. JR C,E; JR NCE;
JRZE; and JR NZE are relative conditional jumps that perform the
jump if the carry is set or reset or if the zero flag is set or reset, re-
spectively. The DJNZ E instruction is unique in that it decrements
the contents of the B register. If the result is nonzero, the jump is
performed; if zero, the next instruction in sequence is executed.

The two call instructions in this group also appear in the 8080 and
8008. CALL NN is an unconditional call and CALL CC,NN condi-
tionally calls the subroutine at address NN. The conditions CC are
the same as in the previous list. Likewise, RET and RET CC are
also identical to the 8080 and 8008 instructions. RET uncondition-
ally returns to the instruction after the call, while RET CC condi-
tionally returns based on the CC field and the state of the condition-
code register.

\

P TFIELD
00H 000
08H 001
104 010
18H 011
20 100
28H 101
30H 110
38H m

Fig. 5-22. RST P instruction.
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RETI and RETN are two special instructions that provide for
special actions for returning from an external maskable interrupt
(RETI) and nonmaskable interrupt (RETN). They will be dis-
cussed in Chapter 7.

RST P is also an instruction present in the 8080 and 8008. It is
used for two operations. The primary operation is as an instruction
that an interrupting device “jams” onto the data bus to effect a
vectored interrupt. The subordinate function is to allow a special
call to one of eight page 0 locations. The interrupt functions will
be discussed in Chapter 7. When the RST P is used to call a page 0
location, the instruction acts as any unconditional call. The jump is
made to one of eight page 0 locations based on the T field of the
RST P as shown in Fig. 5-22.

INPUT AND OUTPUT GROUP

The last grouping of Z-80 instructions (Table 5-10) is the Input
and Output group. The instructions in this group allow for transfer
of 8-bit bytes of data to and from CPU registers A, B, C, D, E, H, or
L with any of 256 possible I/O device addresses specified in the in-
struction. In addition. block transfers similar to the block transfers
in the previous block transfer group can be implemented. Up to 256
bytes may be transferred semi-automatically or automatically be-
tween an I/O device and a memory block by using the I/O block
transfer instructions (INI, INIR, IND, INDR, OUTI, OTIR, OUTD,
and OTDR). The I/O instructions will be covered in detail in Chap-
ter 15 of this section.
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CHAPTER 6

Flags and Arithmetic Operations

The Z-80 flags have been briefly mentioned in previous chapters.
This chapter discusses the flags in detail and the operations in the
Z-80 which affect them. The flag register format is shown in Fig. 6-1.
Although the flags exist as individual flip-flops within the CPU, they
are logically grouped to simplify saving and restoring the flags for
interrupts and other functions.

The Z flag, S flag, CY flag, and parity (overflow flag) may be
tested by the conditional jumps described in Chapter 5. The condi-
tional jump effectively tests the results of arithmetic, logical, shift,
I/0 or other operations preceding the conditional jump. The H and
N flags are used to facilitate decimal or (bed) arithmetic operations.

Z FLAG

The Z flag (bit position 6) is set if the result of certain instruction
executions was zero. The Z flag will be set if the result is zero and
reset if the result is nonzero for the instructions shown in Table 6-1.

BIT BIT
76 5 4 3 2 1 0

NOT NOT
S 1 % juseo] M [usen

N

PIV C
L l——CARRY FLAG
DAA ADD/SUBTRACT FLAG

PARITY/OVERFLOW FLAG

- DAA HALF-CARRY FLAG

“ ZERO FLAG
~— SIGN FLAG

Fig. 6-1. Flag register format.
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Table 6-1. Zero Flag Actions

Group Instruction Action
8-Bit LD Al Set Z if | register=0, otherwise reset Z
Load Group LD AR Set Z if R register=0, otherwise reset Z
Search Group E:B,E;'[I)RR’ Set if A—(HL), otherwise reset
ADD AS
ADC, AS
SUB §
8-Bit SBC AS
Arithmetic OR S
Group XOR S
CP S
INC §
DEC S
General- DAA
Purpose
Arithmetic NEG
Group
Set if result—0, otherwise reset
16-Bit ADC HL,SS
Arithmetic SBC HL,SS
Group
RLC S
RL
RRC S
Rotate and RR S
Shift Group SLA S
SRA S
SRL S
RLD
RRD
Bit Test Group BIT B,S Set if designated bit==0, otherwise reset
Input and INR,(C) Set if input data==0, otherwise reset
Output Group INI,IND, Set if B — 1 = 0, otherwise reset
INIR,INDR, Set
QUTI,OUTD Set if B — 1 = 0, otherwise reset
OTIR,OTDR Set

As the table shows, the Z flag is affected principally for arithmetic,
logical, and shift operations. Loads and stores have no effect on the
Z flag except for the two cases of LD A, and LD A,R. The search
group is essentially a comparison or subtraction and the Z flag is
also affected here. The bit test group is effectively a logical anp
and the Z flag is again set or reset on the result. Note that except
for the instructions shown, no other instructions have an effect on
the Z flag. Once the Z flag is set or reset by an ADD A,S, for exam-
ple, it will not be reset until the next instruction in this group is
encountered. This is an important point as it means that the condi-
tional jumps on the Z flag, JP Z,NN; JP NZNN; JRZ,E; and JR NZ E,
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do not have to be immediately executed after the instruction that
affects the Z flag. As long as no other instructions in Table 6-1 ap-
pear before the test, the conditional jump may be deferred as long
as desired. In actual practice, the conditional jump will occur close
to the instruction setting the flag, however.

The Z flag would normally be tested for a variety of conditions.
Some of the more common ones are shown below:

1. Equality of two operands after a CP (compare).

2. Increment or decrement of an index count down to 0.

3. Bit test result of 0.

4. Result after a shift of 0, signifying no additional data in oper-
and.

5. Zero field after ano.

SIGN FLAG

The S flag (bit-position 7) is set if the result of certain instruction
executions are negative and reset if they are positive. Since in two’s
complement notation, positive quantities have bit 7= 0 and nega-
tive quantities have bit 7 =1, the sign flag reflects the true sign
of the result. The S flag is affected by the instructions shown in
Table 6-2.

Sign flag actions are very similar to zero flag actions as shown
in the table. The sign flag is primarily affected by arithmetic and
shift operations, including the comparisons in the search group.
Note that for some instructions the flag is affected, but that the state
is not known. The same ground rules on testing of the sign flag
apply as for testing of the zero flag; the conditional branch must
be performed before an instruction is executed that affects the flag.
Some of the common conditions for which the sign flag is tested are:

1. Comparisons of two operands (greater, less than, etc.)
2. Increment or decrement of an index count past 0
3. Shift of a 1 (or 0) bit into sign bit position

CARRY FLAG

While the zero and sign flag were associated with arithmetic, shift,
and logical operations, the carry flag is associated principally with
arithmetic and shift operations as shown in Table 6-3, although it is
reset by the logical instructions.

The carry flag is used to:

1. Test the results of the comparison of two operands
2. Test the results of a shift operation
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3. Provide a means to do multiple-precision arithmetic

When a carry is tested after a compare of two unsigned operands,
the carry will be reset if in the comparison OP1 : OP2 (OP1 — OP2),
OP1 is greater or equal to the second operand OP2. Some examples
of this are shown in Fig. 6-2. The comparison could also have been
tested by the sign bit, which is a more common way to implement

\

Table 6-2. Sign Flag Actions

Group Instruction Action
8-Bit LD Al Set if | register is negative, otherwise reset
Load
Group LD AR Set if R register is negative, otherwise reset
Search CPI,CPIR,
Group CPD,CPDR
ADD A,S
ADC AS
SUB S
SBC A,S
8-Bit AND S Set if result is negative, otherwise reset
Arithmetic OR S
Group XOR S
CP S
INC S
PEC S
General- DAA Set if msb of A = 1, otherwise reset
Purpose
Arithmetic NEG
Group
16-Bit ADC HL,SS
Arithmetic
Group SBC HL,SS
RLC S Set if result is negative, otherwise reset
RL S
Rotate RRC §
and RR S
Shift SLA' S
Group SRA S
SRL S
RLD . . . . .
RRD Set if A is negative after shift, reset otherwise
Bit Test BIT B,S Unknown
Group
IN R(C) Set if input data is negative, otherwise reset
Input and INILINIR,
Output IND,INDR, Unknown
Group OUTI,OTIR,
OuUTD,OTDR
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Table 6-3. Carry Flag Actions

Group Instruction Action
ﬁgg ::z Set if carry from bit 7, otherwise reset
8-Bit SUB S Set if no borrow, otherwise reset
A . SBC S
Arithmetic
Group AND §
OR 5 Reset
XOR S
CP S Set if no borrow, otherwise reset
G DAA Set if bed carry, otherwise reset
eneral-
Purpose NEG Set if A was not OOH before negate, otherwise reset
Arithmetic " .
CCF Set if CY was 0 before CCF, otherwise reset
Group
SCF Set
ADD HL,SS . .

‘ t if f bit 15, oth t
1681t ADC HLSS Set if carry from bi otherwise rese
Arithmetic SBC HL,SS Set if no borrow, otherwise reset
Group ADD IX,PP

. tif ) X .

ADD 1Y RR Set if carry from bit 15, otherwise reset
Ell:iA Set from A bit 7
g::iA Set from A bit O
Rotate RLC S Set from bit 7 of operand
RL S
and
Shift RRC S .
i fr
Group RR S Set from bit O of operand
SLA S Set from bit 7 of operand
SRA S Set from bit O of operand
SRL § Set from bit O of operand
COMPARE 20: 2
00010100 {204): 06200010 (2
00010100 {2045)
cY 11111110 (-2
(0] 00010010 (+18, WiTH CARRY, 2052
Fig. 6-2. Carry comparisons.

COMPARE 20: 20
00010100 {2019): 00910100 (201g)

00010100 ( 201}
CY TN (X
[0]  ooowooo (@ wiTH cARRY, 20 - 20
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the test. In the shift instructions, the carry is set or reset by the state
of the bit shifted out of the operand and this provides a convenient
way of testing and conditionally branching on a carry (1 bit) or no
carry (0 bit). Finally, the carry is set from the high order bit of the
result during multiple-precision adds or subtracts. The first add is
an ADD (without carry) while successive adds of higher-order oper-
ands are ADC types, which add in the carry from the lower-order
result (see Fig. 6-3).

MULTIPLE-PRECISION ADD

MS BYTE LS BYTE
00011100 N0 + 7,287 16B1TS)
+ 01011111 11111100 20,572 (16 B1TS)
1Y Tmn + 71859 (16 BITS)
GTTII0

MULTIPLE-PRECISION SUBTRACT

MS BYTE LS BYTE
00001010 0001010 w2570 (6 BITS)
00100000 00000001 —(+8193 (16 BITS)
00001010 20001010 42570 (16BITS)
uo 1 ~8193 (16BITS)

1—EY Gooor001 5623 (16BITS)
11101010

Fig. 6-3. Carry in multiple-precision operations.

PARITY/OVERFLOW FLAG

The parity/overflow flag (bit-position 2 in the flag register) is a
dual-purpose flag. In the parity case, the flag is set to represent odd
parity of the result of the operation. Even parity occurs when the
sum of the eight bits of the result is even. In this case, the parity
bit is set. If the sum is odd, the parity bit is reset. (See Fig. 6-4).
When the P/V flag is used to represent overflow, the flag is set if
arithmetic overflow occurs after an arithmetic operation. Arithmetic
overflow will occur if in an add or subtract operation of two numbers
of like siguos the sign of the result changes, indicating that the result
is too large to be held in eight (or sixteen) bits. Examples of over-
flow conditions are shown in Fig. 6-5. Table 6-4 lists the instructions
that affect the parity/overflow flag.

RESULT = 00101011
fhgubtn)

4 ONE BITS = EVEN PARITY, SET PIV FLAG
Fig. 6-4. P/V flag used as

RESULT » 00111110 parity indicator,
kel il

5ONE BITS = ODD PARITY, RESET P/V FLAG
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Table 6-4. Parity/Overflow Flag Actions

Group Instruction Action
8-Bit tD Al
’ Contents of IFF2
Load Group LD AR ontents of IFF
Block LD1,LDD,
s q CPI,CPIR, Set if BC — 1 5% 0, otherwise reset
ransfer an CPD,CPDR
Search Group
LDIR,LDDR Reset
ADD AS
ADC AS . "
SUB S Set if overflow, otherwise reset
SBC AS
AND S
8-Bit OR S Set if parity even, otherwise reset
Arithmetic XOR S
Group CP S Set if overflow, otherwise reset
Set if operand was 7FH before increment,
INC S .
otherwise reset
DEC S Set if ?perand was B0H before increment,
otherwise reset
General- DAA Set if (A) parity even, otherwise reset
Purpose K
Arithmetic NEG Se.t if (A) was 80H before negate, other-
wise reset
Group
16-Bit
Arithmetic SAI;)CC }-ll-:.ElSSSS Set if overflow, otherwise reset
Group
RLC S
RL S
RRC S
RR S
Sﬁ:zteGra:f SLA S Set if parity even, otherwise reset
P SRA S
SRL S
RLD S
RRD §
Bit Test BIT B,S Unknown
Group
IN R(C) Set if parity even, otherwise reset
Input and :E:)’llr\ll\l]g;?
Qutput Grou ’ .
p P OUTL,OTIR, Unknown
OUTD,OTDR
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Table 6-5. H and N Flag Actions

Group Instruction H Action N Action
8-Bit Load LD Al
Group LD AR
Reset Reset
Block LDI,LDIR, ese
Transfer LDD,LDDR
and Search | Cp|,CPIRCPD, | Set if no borrow from bit 4, | o
Group CPDR otherwise reset
ADD A,S Set if no carry from bit 3, other- R
ADC AS wise reset eset
SUB § Set if no borrow from bit 4, s
SBC AS otherwise reset et
AND S
8-Bit OR S Set Reset
Arithmetic XOR §
Grou i i
sroup P s Set if .no borrow from bit 4, Set
otherwise reset
INC § Set if carry from bit 3, otherwise Reset
reset
Set if no borrow from bit 4,
DEC S otherwise reset Set
DAA Indeterminate Not affected
CPL Set Set
General-
Purpose Set if no borrow from bit 4,
Arithmetic NEG otherwise reset Set
Group CCF Not affected Reset
SCF Reset Set
ADD HL,SS Set if carry out of bit 11, other- Reset
ADC HL,SS wise reset ese
16-Bit : -
Arithmetic SBC HLSS Set if no borrow from bit 12, Set
Group otherwise reset
" ADD IX,PP Set if carry out of bit 11, other- R
ADD 1Y,RR wise reset eset
RLCA
RLA
RRCA
RRA
RIC S
Rotate RL S
and Shift RRC S Reset Reset
Group RR S
SLA S
SRA S
SRL §
RLD
RRD
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Table 6-5. H and N Flag Actions—cont

Group Instruction H Action N Action
Bit Test
o BIT B, Set Reset
roup
INR,(C) Reset Reset
Input and INLINIR,
Output IND,INDR, .
Group OUTL,OTIR, Indeterminate Set
OUTD,0TDR

01111111 +12739
PIV + 01000000 + 6410

10111111 +19179 (OVERFLOW, TOO LARGE TO HOLD IN 8 BITS)

10000011 -12510
PIV +10000010 ~12610
00000101 25119 (OVERFLOW, TOO LARGE TO HOLD IN 8 BITS)

00100000 +3210
PV 00100000 +3210
@ 01000000 +64yg  (NO OVERFLOW}

Fig. 6-5. Overflow conditions and P/V flag.

H AND N FLAGS

The H and N flags (bit-positions 4 and 1, respectively) are two
flags that cannot be tested by conditional jump instructions. They
are used by the Z-80 CPU for bed arithmetic operations. H repre-
sents the half-carry from the four least significant bits of the result
(least significant bed digit) and N is the subtract flag, which is set
to indicate whether an add or subtract was last executed. Table 6-5
shows the instructions affecting the H and N flags.

Note that in the general case, an add instruction resets the N flag
and a subtract sets the N flag. This is also true for increments (adds)
and decrements (subtracts). When the DAA instruction is executed
after an add or subtract, it senses the N flag and half-carry H flag
and properly adjusts the result from a binary to bed result. For an
add (N =0), a binary result must be corrected by adding a six to
the bed digit position under certain conditions. Those conditions
are:

1. If there has been a carry from the bed digit (H=1or C=1).
2. If there was no carry but bed digit position has a value greater
than 1001..
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ADD 11 AND 22 IN BCD

0001 | 0001 (11 BCD)
0010| 0010 (22 BCD)

001110011  (33BCD) CY=0,H=0

ADD 19 AND 29 IN BCD

0001|2001  (19BCD)

0010] 1000 (298CD)

010070010 142 BCOLWRONG) CY =0, H =1

0000 | 0110 ADJUST BY +6 TO LOW ORDER BCD DIGIT

01001 1000 {48 BCD CORRECT)

ADD 91 AND 92 IN BCD

1001 | 0001 (91BCD)
cy _1921__@0_ (92 BCD)
[1] oo o1 (238CDiWRONG) CY =1, =0
Cy OUO| 0000  ADJUST BY +6T0 HIGH ORDER BCD DIGIT
1000 1001 (83 BCD WITH CY = 1 CORRECT)

ADD 99 AND 99 IN BCD

1001 | 1001 (99 BCD)
cy 100171001  (99BCD
(1) TooTooo 32 8cotwrONG) Y =1, H =1
cy OLIOJ 010  ADJUSTBY +6T0 BOTH BCD DIGITS

1001 | 1000 (98 BCD WITH CY = 1 CORRECT)
Fig. 6-6. Bed addition and use of CY and H.

Some examples of the above are shown in Fig. 6-6. For a subtract
(N =1), a binary result must be corrected by subtracting a six from
a bed digit position under certain conditions. If there is a half-carry,
a six is subtracted from the least significant bed digit position. If
there is a carry, a six is subtracted from the most significant bed
digit position. If there are both a carry and half-carry, a six is sub-
tracted from each bed digit position. Fig. 6-7 illustrates the condi-
tions for bed subtract corrections.

Multiple-precision bed arithmetic is easily possible by maintain-
ing the carry from the last bed addition or subtraction.
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SUBTRACT 11 FROM 99 IN BCD
1001 | 1001
-0001 | 0001
1000 | 1000

SUBTRACT 19 FROM 91 IN BCD

1001
-0001

<
<

0001
1001

iy

o111 1000

0000

¢y
[o] om

0110
0010

99 BCDY
{11 8CD}
(88 BCD) CY =0, H=0

{91 BCO)

(19 BCD}

(78 BCDIWRONG) CY =0, H =1

ADJUST BY -6 TO LOW ORDER BCD DIGIT
{72 BCD WITH CY = 0, CORRECT)

SUBTRACT 91 FROM 19 IN BCD

0001
-1001

gy 1001
(1] 1000 | 1000

oy 0l

1001
0001

0000

0010

1000

(19 BCD}

(91 BCD}

(88 BCDLWRONG) CY =1, H =0

ADJUST BY -6 TO HiGH ORDER BCD DIGIT
{28 BCD WITH CY = 0, CORRECD

SUBTRACT 99 FROM 11 IN BCD

0001
-1001

cy 100
[1] o

0110

oy
0001

Fig. 6-7. Bcd subtraction and use of CY and H.
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1000
| 0116

0010

(11 BCD)

(99 BCD)

(78 BCDLWRONG) CY =1, H =1
ADJUST BY -6 TO BOTH BCD DIGITS
(12 BCD WITH CY = 0, CORRECT
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CHAPTER 7

Interrupt Sequences

Interrupts in the Z-80 serve the same purposes as interrupts in
other microprocessors and computers—they signal the microproces-
sor that an external event has occurred that requires attention. Many
times the external event is associated with the transfer of 1/O data
to and from the microcomputer timing functions, or abnormal or
catastrophic external conditions.

When interrupts are associated with transfer of 1/O data, the in-
terrupt is a mechanism to overlap CPU processing time with the
I/O activity. As an example of this kind of interrupt, let us assume
that a microcomputer system is connected to a “high-speed” paper-
tape reader. The paper-tape reader may be able to read data at the
rate of 500 frames, or bytes, per second. Each new data byte will
be available every 1/500 second or 2 milliseconds. If the program
that reads data from the paper-tape reader is implemented without
interrupts, it will read a byte of data by an IN instruction every 2
milliseconds and the entire read operation will take approximately
2.75 microseconds, as shown in Fig. 7-1. For the remainder of the
time the program is simply continually querying the paper-tape
reader (by means of another IN instruction to read status informa-
tion) whether the next byte is available. If 500 bytes are to be read,
and if the average CPU instruction time is 2.5 microseconds, then
(1/2.75 x 10—¢ — 500) = 363,136 instruction times are lost while
the CPU is idle awaiting the next byte of data.

Interrupts allow the CPU to make use of the idle time associated
with I/O activity. With proper use of interrupts, the CPU may exe-
cute another portion of the program while the I/0 idle time occurs
and be informed of the availability of the next data byte by inter-
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Fig. 7-1. 1/0 idle time example.

rupt action. An interrupt sequence will then be entered and the CPU
can quickly pick up the next I/O data, do some minimal processing,
and exit the interrupt sequence to return to the interrupted program.
If multiple 1/O activity is required, many I/O devices can operate
in this fashion, signaling the CPU by vectored interrupts which de-
vice requires I/O attention. The Z-80 expands the 8-vectored inter-
rupt capability of the 8080 to 128 separate vectored interrupts that
are usable for I/O or other types of functions.

A second use of interrupts is to provide CPU timing functions.
It is convenient to provide measured time intervals to the CPU to
enable the CPU to maintain a real-time clock for system time-out
functions or time-of-day indications. Typically, the time interval is
provided via interrupts, with a programmable counter-timer inter-
face that interrupts the CPU every tenth of a second, or so. The
CPU will recognize the interrupt as a timer interrupt, enter the
proper software interrupt processing routine, and adjust a system
clock and/or perform other timing functions, and exit the interrupt
routine to continue processing at the interrupted point.

A third use of interrupts is to signal abnormal or catastrophic
system conditions. Typical conditions of which the CPU would be
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informed is pending power failure or failure of a redundant portion
of the computer system in a real-time system. Often these functions
are implemented using a nonmaskable interrupt, since the interrupt
must be recognized immediately and not deferred until current pro-
cessing is completed. The Z-80 has provision for this kind of inter-
rupt with a special NMI (nonmaskable interrupt) input that pro-
duces a separate interrupt action from other external interrupts.

7-80 INTERRUPT INPUTS

As Fig. 3-1 shows, there are two interrupt inputs to the Z-80 micro-
processor chip, the NMI, nonmaskable interrupt, and the INT, or
normal external interrupt. The NMI input allows a single NMI
interrupt while the INT allows up to 128 separate vectored inter-
rupts by means of encoding from external device controllers or in-
terrupt logic. The NMI is always recognized by the CPU. If the
NMI becomes active, the automatic NMI actions are unconditionally
implemented. The INT is recognized by the CPU only if an inter-
rupt enahle condition is present in the CPU. The interrupt enable
is provided by a programmable flip-flop that can be set (interrupts
enabled) or reset by the EI or DI instructions. The INT interrupt
action is more complicated than the NMI action, since an external
device must provide encoded data relating to the identification of
the interrupting device. In addition, there are three different inter-
rupt modes for the maskable INT interrupt, modes 0, 1, and 2, that
are set by instructions IM 0, IM 1, IM 2. Each mode provides a dif-
ferent interrupt action.

NMI INTERRUPT

When an NMI interrupt occurs (NMI goes low to active state),
the interrupt is recognized at the end of the current instruction.
The CPU then effectively performs a Restart instruction to location
0066H. As Chapter 5 describes, a Restart pushes the current con-
tents of the PC into the stack, and transfers control to one of eight
locations 0000, 000SH, . . . 0038H. The NMI action is the same as
a Restart, but the transfer address is always 0066H. As an example
of the stack actions during the NMI, let us assume that the CPU
was executing the instructions shown in Fig. 7-2. The NMI inter-
rupt occurs during the RRCA instruction. At the end of the RRCA,
the contents of the program counter is 102BH. As the NMI interrupt
is implemented by the CPU, the contents of the PC is pushed into
the stack as shown, and the stack pointer decremented by two. The
instruction at location 0066H is then executed.
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We will assume in this case that the external condition causing
the interrupt is not a catastrophic one, and the system will remain
operative. Since the flag register and all CPU registers must be re-
stored exactly as they were at the time the interrupt occurred when
a return to location 102AH is made, the routine at 0066H must some-
how save the environment. The easiest way to do this in the Z-80
is simply to switch to the alternate set of registers by two exchange

{1 MAIN PROGRAM

MEMORY
LOCATION INSTRUCTION
1024H LD A,{2003H)
1027H LD B,{IY + D)
102AH RRCA =——N0| @
1028H cpix +py  INTERRUPT
5
SPo—el  2BH SAVE RETURN ADDRESS
T0H IN STACK

| (

{4 NMI INTERRUPT PROCESSING

MEMORY

LOCATION INSTRUCTION

0066H X AF, AF' EXCHANGE AF
0067H EXX EXCHANGE OTHERS
OTHER INTERRUPT
PROCESSING
ZBH RETURN ADDRESS
104 TO PC
Sp———s| ) 00AOH X AF,AF' RESTORE AF

00A1H EXX RESTORE OTHERS
RETN RETURN

Fig. 7-2. NMI interrupt processing.

instructions. Interrupt processing now praceeds for the NMI condi-
tion. The size of the interrupt processing routine is dependent on the
amount of processing to be performed. At the end of processing, two
exchange instructions restore the CPU registers and flags to their
status at the time of the interrupt and a special instruction RETN
is executed to return from the NMI interrupt. RETN pops the pro-
gram counter from the stack and causes the CPU to start execution
of the next instruction at 102AH. At this point, all CPU registers
and flags appear as if the NMI interrupt had never occurred.
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There is a subtlety about the NMI that has not been mentioned
previously. There are actually two interrupt flip-flops in the Z-80
CPU, designated IFF,; and IFF.. IFF, is the flip-flop associated with
disabling or enabling the maskable interrupt. IFF; is used to tem-
porarily store the state of IFF; when an NMI interrupt occurs. In
addition to storage of IFF;, the NMI resets IFF, so that no mask-
able external interrupt can occur. This avoids the reentrancy prob-
lems of simultaneous NMI and maskable interrupts. When the
RETN is executed, the previous state of IFF; is restored by trans-
ferring the contents of IFF,. The maskable interrupt status (en-
abled or disabled) is now the same as before the NMI interrupt.
If the program can allow an external maskable interrupt to occur
during the time an NMI interrupt is being processed, an EI instruc-
tion can be executed after storage of the registers and flags. Exter-
nal interrupts would then be enabled during NMI processing time,
although this action would probably not be typical in most appli-
cations.

MASKABLE INTERRUPT MODE 0

Interrupt mode 0 is the default CPU interrupt mode on start up.
When signal RESET initially becomes active, mode 0 is set in the
CPU. Mode 0 may also be set by execution of an IM 0 instruction.
Interrupt mode 0 is identical to the interrupt processing in the 8080.
If mode 0 is set and the interrupt enable flip-flop IFF; is set and
an external maskable interrupt occurs, the following actions take
place:

1. Interrupt occurs (INT goes low)

2. At end of current instruction, CPU recognizes interrupt

3. CPU responds by IORQ and MI signal .

4. External device recognizes the IORQ and M1 response and
outputs a Restart instruction to data bus encoded with 000,
to 111, as T field

5. CPU strobes in Restart and executes the instruction causing
transfer to page 0 location corresponding to T field (0, 8, 10
..., 38H)

6. Instructions defining the interrupt processing routine are exe-
cuted

7. An RETI instruction is executed returning control to next in-
struction after interrupt

Mode 0 interrupt processing is similar to the NMI interrupt pro-
cessing. Both execute a Restart, both transfer to a page 0 location,
and both require an RET instruction at the end of the interrupt
processing. Let us illustrate a maskable interrupt mode 0 by hy-
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pothesizing a paper-tape-reader controller with interrupt capability.
Fig. 7-3 shows the interrupt action. When the next frame of tape
has been read, the paper-tape controller brings the INT line low.
When the interrupt is recognized by the CPU, lines TORQ and M1
are brought low (not to scale in figure). This is decoded by the
controller as an interrupt acknowledge and the controller jams an
RST 20H instruction onto the data bus. The CPU executes the RST
20H, pushing the contents of the program counter (3332H) into the
stack and transferring control to page 0 location 20H. At 20H a JP
OFEEOH is executed to transfer control to the paper-tape interrupt

- NEXT
FRAME
PAPER TAPE N
READER i {21 CONTROLLERICPU
CONTROLLER INTERRUBT
— . COMMUNICATION
TORQ .
"
Mi Lr—
RESTART )
204
{3
sp— M SAVE LOCATION
33H OF INTERRUPT
o {4 INTERRUPT PROCESSING AT 20H
RETURN TO MEMORY
3332 LOCATION INSTRUCTION
0020H 1P OFEEOH
(S PAPER TAPE INTERRUPT
) PROCESSING ROUTINE
FEEOH PUSH AF
5 FEETH PUSH BC
2 INTERRUPT
i PRATLS FEE2H PUSH DE
0 PC FEE3H PUSH HL
Sp—s
OTHERS S PROCESSING
FEFOH POP HL
FEFIH POP DE
FEF2H POP BC
FEF3H POP AF
FEF4H El
FEFSH RET |

Fig. 7-3. Mode 0 interrupt processing.
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processing routine at FEEOH. (The interrupts have automatically
been disabled on the receipt of the maskable interrupt and will not
be reenabled until an EI instruction is executed.) The paper tape
routine saves the contents of the registers and flags by a series of
pushes into the stack (an alternative way to save the environment
from register switching). Instructions are then executed to read in
the character, reset the interrupt states in the paper-tape controller,
and, in general, process the data. At the end of the interrupt pro-
cessing routine, the environment is restored by a series of pops in
reverse order, an EI instruction is executed for the next character
interrupt, and an RETT returns control to location 3332H.

The above example considers only one interrupting device, the
paper-tape-reader controller. It is possible to have many interrupt-
ing devices in this mode and mode 2 of the Z-80 interrupt sequence.
When many devices are capable of interrupting, some means of pri-
oritizing the devices must be implemented to avoid simultaneous
interrupt requests from two or more devices over the same inter-
rupt line. If a prioritizing scheme is not used, confusion will result
as each device thinks that it has received an interrupt acknowledge.

In a prioritizing scheme, each device is assigned a priority from
high to low as shown in Fig. 7-4. The eight devices shown here
connect to a priority interrupt control unit (Intel 8214). The pri-
ority interrupt control unit and associated logic allows only one de-
vice to interrupt at a time and handles all interrupt communication
between the CPU and interrupting devices in interrupt mode 0.
If several devices have simultaneous interrupt requests, the control
unit will determine the highest-priority request, bring down the
INT line, and jam the proper Restart instruction onto the data bus

DECREASING PRIORITY b

pEV DEV DEV DEV DEV DEV DEV DEV
0 1

2 3 4 5 6 7
3 {
INTEL
8214
AND OTHER
LOGIC

INT | RESTART
70 T0
CcPU CPU
M1 AND TORQ

Fig. 7-4. Priority encoding for interrupt mode 0.
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after interrupt acknowledge. At any time during the servicing of
one interrupt, one or more higher-priority interrupts may become
active. When this occurs, the interrupt sequences for the higher-
level interrupts are entered. If the interrupt control flip-flop IFF,
has been properly maintained to prevent interrupts from other de-
vices at critical times, such as saving the environment, there should
be no conflicts in servicing n number of interrupts in nested fashion.
Further examples of prioritizing will be discussed for the mode 3
interrupt sequence.

MASKABLE INTERRUPT MODE 1

The next two interrupt modes, mode 1 and mode 2, are not com-
patible with the Intel 8080. Mode 1 is set by the IM 1 instruction.
The interrupt actions of mode 1 are identical to the nonmaskable
interrupt response, except that the Restart location is location 0038H
rather than 0066H. If mode 1 is set and the maskable interrupts are
enabled, then an interrupt request on INT will cause a Restart to
location 0038H. The contents of the program counter will be saved
in the stack and the interrupt servicing routine at location 0038H
will be entered. The advantage of mode 1, as in the NMI interrupt,
is that no external logic is required to jam the Restart onto the data
bus at the proper time. An external interrupt can be implemented
with only enough logic to bring INT active and recognize the inter-
rupt acknowledge. Of course, only one interrupt level is permitted
in this mode.

MASKABLE INTERRUPT MODE 2

The last and most powerful interrupt mode is interrupt mode 2.
This mode allows up to 128 interrupts from external devices, each
fully vectored to an interrupt location anywhere in memory. Fur-
thermore the peripheral modules in the Zilog family, such as the
Z-80 PIO (parallel 1/O), Z80-SIO (serial I/O), and Z-80-CTC
(counter-timer circuit) may easily be connected in daisy-chained
fashion to allow for complete prioritizing of all interrupt levels.

Mode 2 is set by an IM 2 instruction. The heart of this interrupt
mode is an interrupt vector table anywhere in memory. In general,
the table is (2 X N) bytes long, where N is the number of interrupts
in the system and the start of the table is pointed to by IIIIIIII-
00000000,, where I is the contents of the Interrupt Vector regis-
ter I. For any interrupt, the I register supplies the eight most sig-
nificant bits of the table address while the interrupting device sup-
plies the eight least significant bits of the table address. The table
has up to 128 entries as shown in Fig. 7-5. Each entry is two bytes
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long and represents a memory address for the interrupt servicing
routine for a particular device in standard 8008/8080/Z-80 order—
most significant byte last.

IREGISTER [ 1 1 1 1 1 T 1]
LOCATION
ADDRESS OF TNTER-
[TI111000000002 L RupT PROCESSING |
+ ROUTINE DEVICED
2 ] 11 28vmEs
3 1 ENTRY
+4 ! UP 10 128
+5 2 ENTRIES
+ {256 BYTES)
+25419 1
+25519 2o T

Fig. 7-5. Interrupt mode 2 interrupt vector table.

The general sequence for interrupt mode 2 is this:

1. If IM 2 is set and IFF, =1 and INT is active, the CPU recog-
nizes the interrupt at the next M1 cycle.

2. The interrupting device responds to the interrupt acknowledge
with an 8-bit value.

3. The 8-bit value is merged into a memory address with the
contents of the I register.

4. The CPU pushes the contents of the PC into the stack.

5. The contents of the interrupt vector table is accessed using the
address computed in step 3.

6. The PC is loaded with the contents of the interrupt vector
table entry to effectively cause a jump to the interrupt servicing
routine defined by the address vector in the table.

Fig. 7-6 shows an example of this process. The interrupt vector
table is located at FQOOH. The table has ten entries of two bytes
each defining ten interrupt servicing routines for the ten interrupt-
ing devices. Note that two of the addresses are identical, indicating
that the same interrupt service will be performed for two devices.
The interrupt vector register I has previously been loaded with FOH.
When an external interrupt is generated for device number 5 and
the interrupt acknowledge is received, the device controller places
an 8-bit vector on the data bus, in this case 02H. The 02H is merged
with the I register to form address FOO2H. The CPU now reads the
two bytes at locations FOO2H and FOO3H to find the address of the
interrupt servicing routine, after pushing the current contents of the
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(6} INTERRUPT PROCESSING
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INTERRUPTED PROGRAM

8102H RETI (D STACK —s PC

Fig. 7-6. Interrupt mode 2 example.

PC into the stack. The table entry is 8030H, and the CPU transfers
control to this location for interrupt servicing. The interrupt servic-
ing is then performed and an RETI is executed, terminating the in-
terrupt action and returning control to the interrupted location as
the PC is loaded with the return address from the stack.

Note that the interrupting device could supply any eight bits for
the vector, not necessarily that address associated with its I/O
device address in the execution of IN and OUT instructions, al-
though it is convenient to have device address 0 associated with
table entry F000, device 1 associated with table entry FOO2H, etc.
Note also that the interrupting device really supplies only a 7-bit
address. The least significant bit is always 0, since each table entry
is 2 bytes long. Device number n would conveniently supply vector
2 X N, if the table were ordered in this fashion.

In a prioritizing scheme used by Z-80 peripheral devices, each
device has an implicit priority as shown in Fig. 7-7. Here the devices
are Zilog Z-80 PIO (Parallel I/O) modules. Each PIO has automatic
interrupt prioritizing “built-in” and is specifically designed for inter-
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Fig. 7-7. Z-80 interrupt prioritizing interrupt mode 2

rupt mode 2 opelatlon Every PIO is connnected to the Z-80 CPU
INT line in a “wire-or” configuration (INT is directly connected,
without buffering by gating). If the IEI (interrupt enable in) 31gnal
from higher priority devices is high (positive), no higher priority
device has requested service and an interrupt request may be gen-
erated from the PIO. Prior to the interrupt request, the IEO (inter-
rupt enable out) goes low, indicating to lower-priority devices that
they may not request interrupt service by bringing down the INT
line. When the interrupt acknowledge occurs, the PIO automatically
jams the proper 8-bit mode 3 vector onto the data bus to vector the
interrupt to the proper memory location. At the end of interrupt
servicing, the RETI is detected by decoding the instruction op code
and the interrupt for the current PIO is completed. IEO for the cur-
rent PIO is brought high, enabling interrupts from lower-priority
devices.

A prioritizing scheme such as the above not only handles the prob-
lem of simultaneity of interrupt requests, but also enables multilevels
of interrupts. To illustrate the operation of nested interrupts let us

HIGHEST DEVICE 0
PRIORITY JDEVICE) PROCESS ING
0 DEVICE 0
INTERRUPTS
DEVICE |
1 DEVICE 1
INTERRUPT
PROCESSING
DEVICE) _____ ——DEVICE 1
LOWEST 2 \ INTERRUPTS
PRICRITY lf%¥(§ligi§lJ2PT PROCESSIN
C d
MA INLINE MA INLINE DEVICE 2 MA INLINE
PROGRAM PROCESSING “™|NTERRUPTS PROCESSING
T IME oo tom
INSTRUCTION MAIN—& 20000 | 30004 | 4000H [3000H] 20004 §MAIN-
LOCATIONS LINE ZlETC. | EFC. | ETC. [EVC. | ETC. | LINE

Fig. 7-8. Nested interrupt example.
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use the configuration shown in Fig. 7-8. As before, the interrupt vec-
tor table is at location FOOOH and the interrupt vector register has
previously been loaded with FOH. The interrupting devices are
labeled 0, 1, and 2; and they have priority in that order. Interrupt
mode 2 has been previously set. During execution of main-line pro-
gram location 0A82H, device 2 interrupts. Interrupt processing rou-
tine 2000H is entered and the environment is saved as shown. After
enabling interrupts, device number 1 interrupts the interrupt proc-
essing routine for device number 2, jumping to location 3000H.
Finally, device 0 interrupts during the middle of the interrupt proc-
essing routine for device number 1, causing interrupt 0 processing
routine at 4000H to be entered. This routine is completed by an
RETT and the processing routine at 3000 is reentered. This routine
is then completed and, after the RETI, the processing routine at
1000H is again reentered. Finally, the lowest level processing rou-
tine at 1000H is completed, an RETI executed, and a return mode
to the main-line program at 0A82H. At one time during the se-
quence, three nested interrupts were involved. Assuming that the
environment was properly saved and restored and the interrupts
were disabled at proper times, no problems should have been en-
countered with this scheme, or even a great deal more complex
interrupt structure.
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CHAPTER 8

Interfacing Memory and

/O Devices to the Z-80

As the Z-80 requires only a single-phase clock and a single 5-volt
power supply, a minimum Z-80 system can be implemented with few
additional components. This chapter will describe simple interfac-
ing cases of the Z-80 and ROM memory, static RAM memory, dy-
namic RAM memory, and the Zilog Z-80 PIO.

MINIMUM Z-80 SYSTEM

The components required for a minimum Z-80 system are:

1. a 5-volt power supply

2. asingle-phase TTL-compatible clock

3. ameans to reset (restart) the system

4. ROM or PROM memory to contain the program
5. 1/0O interfacing and devices

6. the Z-80 CPU

Fig. 8-1 shows a minimum system with the above components. A
momentary switch resets the CPU and starts program execution at
location 0 by bringing down the RESET signal to a logic 0. As the
reader will recall from Chapter 3, the RESET signal disables inter-
rupts, sets the I and R registers equal to 0, sets interrupt mode 0,
and sets the program counter to 0. A simple timing circuit provides
a square-wave clock input at 2.5 to 4.0 MHz. The clock runs con-
tinuously. The ROM memory is a fast-access (greater than 250 nan-
oseconds) 512 X 8 ROM addressable by lines A0 — A8 of the Z-80.
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Fig. 8-1. A minimum Z-80 system.

No WAIT conditions are necessary as the memory will always re-
spond in time for data to be read, even at a 4-MHz clock rate. The
output of the ROM is a three-state output, so that the lines are in
a high-impedance state when the ROM is not being addressed. The
eight output lines connect directly to the Z-80 data bus lines DO-
D7. The output device is a quad latch whose four flip-flops are set
by D0-D3 when an output operation is performed.

When the RESET switch is pressed, the RESET input goes low,
initializes the CPU, and starts program execution at location 0 of the
ROM. The ROM program is accessed by making memory requests
MREQ and RDs, as no memory writes are possible, of course, with
a read-only device. For this particular ROM, bringing both chip-
select (CS) inputs to a logic O selects the ROM and gates the con-
tents of the memory location addressed by A0-AS8. The program is
addressed by addresses XXXXXXX000000000, through XXXXXXX-
111111111, where X may be any address, as address lines A9-A15
are not connected. (For clarity, all memory addresses would prob-
ably be in the range 0-511;,.) The program probably requires
some memory storage for variables, and this is provided by the 14
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CPU registers. No memory stack is implemented, as no external
RAM memory is provided and CPU registers cannot perform a stack
function.

Data output is provided by the quad latch. Since this is the only
1/0 device in the system, any 1/0O instruction with eny I/O address
will address the latch and latch the contents of data bus lines D0-
D3 when signals TORQ and M1 occur during an I/O cycle. Note
that there is also no decoding of RD or WR and that even a read
1/0 instruction will output data to the latch. Output lines A, B, C,
and D interface to the outside world.

The above example is admittedly a limited application of the
Z-80, but it does serve to illustrate the simplest usable configura-
tion of a Z-80 system. Even with this simple system, a program
could be implemented to provide a variety of dedicated functions,
such as:

1. Play music via the output latches

2. Provide simple digital-to-analog outputs (with a few additional
external components)

3. Provide timing functions of almost any duration

4. Provide automatic telephone dialing (with additional external
logic)

INTERFACING ROM AND RAM

A more usable system with ROM (or PROM) and RAM memory
and limited I/O capability is shown in Fig. 8-2. A larger ROM
(1K X 8) is used to provide 1024 bytes of program area. Two 256
% 4 bit high-speed RAMS (no WAITS necessary) are used to pro-
vide 256 bytes of read-write storage of dynamic variables. The RAM
{(and all system components) are three-state devices to enable “wire-
ORing” all inputs and outputs to the data bus lines. One RAM reads
and writes the four least significant bits of data from the data bus
D3-D0, while the second RAM is used for D7-D4. A quad latch
is used as before for I/O communication for 4-bit outputs from the
CPU. In addition, four external input lines are sampled by gates G1
through G4.

The memory mapping for this configuration is shown in Fig. 8-3.
The ROM memory area is located in locations 0000H through 3FFH.
The RAM memory area is located at locations FFOOH through
FFFFH (256 locations). Address lines A10 through Al4 are not
used. Whenever address line Al15 is a 0, ROM memory is being ad-
dressed, and whenever Al5 =1, RAM memory is being accessed.
The I/0O addresses in the Z-80 are separate from memory addresses
(as opposed to a memory-mapping 1/0O). As in the previous exam-
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Fig. 8-2. Z-80 interfacing with RAM and ROM.
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MEMORY
LOCATION

ROM
1024 LOCATIONS

Fig. 8-3. RAM, ROM
memory mapping.

RAM
FFFFH 256 LOCATIONS

ple, any I/O device address will address either the input or output
1/0 devices.

When the RESET switch is pressed, program execution starts at
location 0 in ROM. The program can address RAM by addressing
locations FFOOH through FFFFH and can utilize a stack area by
setting the stack pointer somewhere in this region. The RD signal to
ROM is somewhat redundant in that all memory accesses to ROM
must be reads. The RD/WR input to the RAMs is derived from the
WR signal from the CPU. I/O inputs are handled a similar way as
in the previous example. When an OUT instruction is executed,
IORQ and M1 become active and the WR signal is also active. Data
bus outputs D3-D0 are latched into the output latches during the
output cycle. When an IN instruction is executed, RD goes active,
and enables the program to sample the input data lines I0-13. The
format of the output and input data is shown in Fig. 8-4. Data bits
seven through four are ignored on output. For input, data bits D7-
D4 will be zeros.

The system shown in Fig. 8-2 is an extremely powerful system
even with the minimum memory configuration. Because it allows
both the input and output, this system could be used to:

INPUT DATA FORMAT

7 0
[o o000 1 1 1 1] 1=iNeUT DATA BITS
Fig. 8-4. Input- and output-data
OUTPUT DATA FORMAT formats RAM/ROM configuration.

IX X X X 0 0 0 0] 0=0UTPUTDATABITS
X = DON'T CARE




1. Decode bed inputs and output bed data in sequence after
processing

2. Use the switch inputs for burglar or fire-alarm sensing with
appropriate signal outputs

3. Input pulse-rate data representing instantaneous speed or other
analogs and process the data

4. Provide digital-to-analog input decoding and analog-to-digital
outputs

DYNAMIC MEMORY INTERFACING

Dynamic RAM memory is interfaced in much the same fashion as
static RAM memory insofar as memory reads and writes for data and
operands are concerned. Due to the electrical requirements of the
RAM, however, every cell in the RAM must be refreshed periodi-
cally. Essentially, this means performing a read cycle for the cell
without accessing the data from the cell about every 2 milliseconds.
Through the R register in the Z-80, a means is provided to generate
the refresh cycle automatically. At every M1 time during an instruc-
tion cycle, signals M1 and memory request MREQ become active
to signal the external dynamic RAM memory that one refresh cycle
may take place. The RAM then performs a refresh utilizing the cur-
rent address on the data bus from the R register. Since the R register
is continually sequencing from 0 to 127 in modulo 27 fashion every
M1 cycle, a new refresh address is continually available to the
dynamic RAM memory.

Fig. 8-5 shows a 4096-byte memory made up of eight 4096 by 1
dynamic RAMs. Each RAM has 12 address inputs split between six
row inputs and six column inputs. The requirements for refresh are
that within a 2-millisecond period each of the 64 possible rows are
addressed. Since this cannot be assured by random access of the
data, as in program execution, it must be systematically performed.
To accomplish this, signals RFSH and MREQ are ANDed as shown.
When both signals are false, signal CE, chip-enable refresh, goes
active and a read is performed for each of the eight chips, using
address lines A5-A0Q as the row address. As 64 refresh cycles must
be performed to refresh all of the cells within a chip, the average
time to perform a complete refresh is 64 X N, where N is the average
instruction time for the Z-80. With N = 2.5 microseconds, it will take
160 microseconds to refresh all 8-K bytes. Signal CE is also enabled
by the normal nonrefresh read or write cycle of the Z-80, when one
of the bytes is accessed for instruction execution, data retrieval or
storage.
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Fig. 8-5. Dynamic RAM refresh.

Z-80 PIO INTERFACING

The Z-80 PIO (Parallel I/O) is a 40-pin Z-80 compatible device
that provides simple interfacing between the Z-80 and peripheral
devices that accept 8-bit parallel data (see Fig. 8-6). Two 8-bit
I/O ports are provided. They can be programmed for either input
or output transfers. In addition to the two sets of eight bidirectional
data lines (A7 — AQ and B7 — B0) there are two sets of two control
lines used for handshaking between the 1/0O device and the PIO, A
RDY and A STB, discussed later. Data is transferred between the
PIO and the Z-80 CPU by data bus lines D7 — DO0. Six control lines
control PIO operations under program control from the Z-80 CPU.
PORT B/A SEL selects port A or B. CONTROL/DATA SEL selects
transfer of either control data or operand data to the PIO. Chip en-
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able is the signal to the PIO indicating that the PIO address has been
decoded in an I/O operation. M1 is the CPU machine cycle one
signal. TORQ and RD are the Z-80 signals related to any 1/O opera-
tion. Three interrupt-control signals provide the interrupt INT, IEI,
and IEO functions discussed in Chapter 7, that is, the eternal inter-
rupt to the CPU and interrupt priority encoding. The clock input
signal, @, is the clock signal from the Z-80 CPU.

(00 bt AQ
D1 et ]
D2 = A2
DATA D3 p—t= A3 | PORT A

8US 14 o pg [ O LINES
D5 < = ot A5
b6 Bilmmanme o Vi)
(D7 ¥4

T0 CPU
OR PORT B/A SEL ARDY
Ramman———— st
oo CONTDATA S BESE gt RV LT
il | o | P a0 i
T ] IP—! VICE(S)
TOR Qe e S E— S ]
[ R — 7]
= B3 [ PORT B

[ —— Y 110 LINES
T =
|EQ+—] ot B
-r_———énBE
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B ROY }PORT 8

| B 208 HANDSHAKE |

+5  GND

Fig. 8-6. PIO interface signals.

Internally, the PIO appears as shown in Fig. 8-7. Each port of the
PIO has a number of registers associated with the port. The main
controlling register is the 2-bit mode control register. It is set by
addressing the PIO port and sending a control word from the CPU
with the format shown in Fig. 8-8. The two most significant bits of
the control word determine the mode as follows:

D7, Dé Mode
00 0 output
01 1 input
10 2 bidirectional
11 3 control
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Fig. 8-7. P10 registers.

PIO MODE 0

Port A may be any mode, 0 through 3. Port B may be mode 0, 1,
or 3. Mode 0 is the output mode of the PIO. In mode 0, the 8-bit
data-output latch is active and the 8-bit data-input register is in-
active, Data may be written to the data-output register by address-
ing the port and transferring eight bits of output data via an OUT
instruction. Data may also be read back from the port by an IN in-
struction, although normally this would not be done as the program
would always be cognizant of what data was written out. Data in
the output register may be overwritten at any time by another OUT
instruction.

MODE
FIELD X X 1 1 1 1

L P—————
0 0 OUTPUT MODE Fig. 8-8. PIO operation mode
0 1 INPUT MODE control word.
1 0 BIDIRECTIONAL MOBE
1 1 CONTROL MODE

X = DON'T CARE



As data is written out to the PIO, the RDY signal associated with
the port goes high, indicating to the external device that data is
available on the port I/O lines. After the external device has read
the data, it responds with signal STB, resetting the port RDY signal
and generating an interrupt (if the PIO has been programmed for
an interrupt).

PI1IO MODE 1

PIO mode 1 is the input mode. If a port is in mode 1, the data-in-
put register is active and the data-output register is inactive. The
sequence of operations for inputting data into the PIO from an ex-
ternal device is as follows:

1. External device senses RDY line from PIO. If true, external
device puts data on port I/O lines and momentarily brings
down STB line.

2. Data is strobed into port data-input register. This resets the
RDY line and causes an interrupt (if the PIO has been pro-
grammed for an interrupt).

3. Z-80 CPU reads the data from the PIO using an IN instruction
with an I/O address of the PIO port.

4. RDY line is set by action of IN instruction, causing external
device to ready next byte of data.

The actions in mode 1 are repeated for each byte of data to be
read in. The input operation is initiated by an IN instruction in
which the data is ignored as the RDY line is set for the first time.

P10 MODE 2

PIO mode 2 is the bidirectional data mode. Since mode 3 uses all
four handshake lines, only port A may be used for this mode. The
port A handshake lines are used for output operations and the port
B handshake lines for input operations. When A STB is low, data
from the data-output register of port A is gated onto the port I/O
lines. When a A STB is high, data may be input into the data-input
register by B STB. Signals A RDY and B RDY may both be active
at the same time, indicating that both output data is available from
the PIO and that the PIO is ready to receive input data from the
device.

PIO MODE 3

Mode 3 operations are set by addressing one of the two ports by
an OUT instruction and transferring a second 8-bit control word
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after the mode 3 control word has been transferred. In the second
control word, each bit corresponds to a port I/O line as shown in
Fig. 8-9. If a bit is one in the control, the corresponding port line is
an input line. If a bit is a zero, the corresponding line will be an
output line. The second control word sets the 8-bit Input/OQutput
Select register shown in Fig. 8-7. Once mode 3 is set, data may be
read or written to the port at any time. No handshaking signals are
active; the STB signal is not used and the RDY signal is always low.
Outputting data to the port will affect those lines programmed as
outputs, while inputting data will read all lines, including those pro-
grammed as outputs.

76543210

[——- CORRESPONDS TO PORT 1/O LINEO
CORRESPONDS TO PORT /O LINE 1
CORRESPONDS TO PORT 1/0 LINE 2
CORRESPONDS TO PORT 1/0 LINE 3
CORRESPONDS TO PORT I/O LINE 4
CORRESPOND S TO PORT 1/0 LINE 5
CORRESPONDS TO PORT 1/O LINE 6
CORRESPONDS TO PORT 1/0 LINE 7

Fig. 8-9. P10 mode 3 input/output programming.

PIO INTERRUPTS

Each port of the PIO may be programmed to provide an external
interrupt to the Z-80 CPU for input or output operations. When an
OUT instruction with the port address is executed and the 8-bit con-
trol word shown in Fig. 8-10 is output to the PIO port, any subse-
quent mode 2 interrupts generated from the PIO port will use the
interrupt vector of the control word which is stored in the port.
Chapter 7 describes how the Interrupt Vector Table address is com-
puted using the contents of the I register and the externally sup-
plied vector. In this case, the PIO control word supplies the least
significant 8 bits of that vector. Bit 0 is always a one, as is consistent
with mode 2 interrupt operation. The PIO will only operate in the
CPU mode 2 interrupt function and not in mode 0.

76543210
[ vectorFied [o]

-

THIS FIELD

SPECIFIES THE i - H

L OWER GROER Fig. 8-10. P10 interrupt vector
ADDRESS BITS control word.
FOR CPU INTER-

RUPT MODE 2
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In conjunction with the port interrupt vector address register,
each PIO port has an interrupt control word register of 2 bits and
an interrupt mask register of 8 bits. The interrupt control word reg-
ister holds data relating to the interrupt control word shown in Fig.
8-11. The interrupt control word is transferred to a port by address-
ing the port with an OUT instruction and transferring the control
word. Bit seven of the control word controls the interrupt of the
PIO. If bit seven is a one, the port will generate an interrupt; if
reset, the port will not generate an interrupt. As previously dis-
cussed, the interrupt occurs on the rising edge of the STB signal for
modes 0, 1, and 2. Bits six, five, and four are used only for PIO mode
3. Bit five defines the active state for the port 1/O lines; if a 1, the
active state is a high state. Bit six specifies either an anD or or
function for interrupt operation. If bit six is a 1, all bits must go to
an active set (high or low) before an interrupt is generated. If bit
six is a 0, any bit in the active state will generate an interrupt. The
port lines that are monitored for the aNp or or condition are fur-
ther defined for a mask. If bit four is a 1 after the interrupt control
word has been received by the PIO, then the next word sent to the
PIO must be a control word mask which is loaded into the port in-
terrupt mask register. If a bit position is a 1 in the mask, then the
corresponding line will be used as an active line for interrupt gener-
ation.

7.6 543210
11

|efaidrnmlo 1 ]
MASK-MASK WORD TO FOLLOW
HIGHALOW-DETERM INES MODE3
ACTIVE STATE FOR INTERRUPT  { gy
ANDJ/OR FUNCTION FOR

INTERRUPT DETECT

ENABLE INTERRUPT
1 < ENABLE

Fig. 8-11. P1O interrupt control word.

PIO INITIAL CONDITIONS

The PIO is initialized on a power-up or M1 condition without
RD or TORQ. The latter condition enables a reset without power-
down and without adding additional signals to the PIO for reset.
The initial PIO conditions are as follows:

1. Port interrupt enable flip-flops, output registers, and mask reg-
isters reset
2. Mode 1 selected
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3. Port 1/0 lines set to high-impedance state
4. Handshake signals low (inactive)
5. Vector address registers not reset

Z-80 PIO CONFIGURATION

Fig. 8-12 shows one PIO replacing the four data-output lines and
four gated input lines of Fig. 8-2, effectively doubling the I/O capa-
bility of the Z-80 system and providing complete interrupt control.
Data lines from the Z-80 bus are input to the PIO data line inputs.
Port A output lines are used to write to an external device while
port B input lines are used to read to an external device. The two
sets of handshake lines are used in the same fashion. The INT line
from the Z-80 PIO is input to the CPU directly. Since there is only
one PIO in the system, there is no daisy-chained interrupt priority
and IEI is set to VCC. IEO is not used. Inputs M1, TORQ, and RD
are connected directly to the equivalent Z-80 signals.

TO CPU SIGNALS FIGURE 8-2

A7 A6 8]«: =

AD
=t |—— 1 PORTA
Al [: =1 /0 LINES
. PORTA
10 OTHER 110 PORT A/B SEL Pi0 I HANDSHAKE | 10
Pl0 1 CONT/DATA SEL EXTERNAL
~=tA 1YL r————— (]
B Iy2 Plo2 CHIP ENABLE ——"1| PORTB DEVICES
P10 3 [ { /O LINES
1Y 3 e—
——  PORTB
2-LINE TO HANDSHAKE

4-LiNE DECODER

Fig. 8-12. PIO use in minimum configuration system.

As the PIO is the only I/0 device in this system, there is no need
to decode the I/O address. However, a decode is shown for larger
systems. The PTIO address is determined by the two most-significant
bits of the I/O address A7 and AB. This scheme would allow for four
PIOs or, as shown, three PIOs and other I/O addresses in the range
00000000 through 00XXXXXX.. The output of the two to four de-
multiplexor enables the PIO for I/0O address 01XXXXXX,. The port
A/B select line is connected to A0 and the control/data select line
to Al. The address mapping for the addressing configuration is
shown below:
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IN/OUT

10 Address Meaning
00000000, Non-PlIO addresses
001111171,

OTXXXX00 Port A, data

OTXXXX01 Port B, data

O0TXXXX10 Port A, command
OTXXXX11 Port B, command
10000000 Other PIO expandability
1711111

To output and input data to the I/O devices not under interrupt
control, the following steps must be taken:

1.

2.

Reset the PIO (power on). This clears the interrupt enable
and PIO interrupt vector registers.

Load interrupt control word or 07H into CPU register R. Out-
put to devices 01000010, and 01000011, with OUT instruc-
tion. This disables PIO interrupts in both ports.

. Load operating mode control word 00001111, into CPU regis-

ter R. Output to device 01000010, with OUT instruction. This
sets up the A port as an output port.

. Load operating mode control word 01001111, into CPU regis-

ter R. Output to device 01000011, with OUT instruction. This
sets up the B port as an input port.

. Input data from device 01000001.. This inputs data from port

B. Initial data is discarded, but the B RDY line is activated,
informing the external device that the CPU is ready for data.

. Port A is now ready to output data and port B is ready to in-

put data. Since no interrupts are programmed, output must
be timed so that the external device has sufficient time to re-
spond to the output and to provide input data. A timing loop
must be included in both the read and write 1/O drivers for
this PIO.

To perform I/O under interrupt control, the interrupt vector reg-
isters must first be output to the PIO and the proper interrupt con-
trol words must be output. If the interrupt processing routine ad-
dress for the output device was at FFOOH and the interrupt process-
ing routine address for the input device was at FFO2H, then the
CPU 1 register must have been loaded with FFH before 1/O activ-
ity. Next, sometime before the first I/O activity the PIO interrupt
vector registers must have been loaded as follows:

—Load interrupt vector control word 00H into CPU register R.
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Output to device 01000010, with OUT instruction. This sets
the port B interrupt vector register to 02H.

Finally, the interrupt control word of 80H must have been output
to device addresses 01000010, and 01000011,. This would enable in-
terrupts for both port A and port B. Interrupts would occur on port
A each time the external device strobed into the output data (A
STB went momentarily low) and on port B each time the external
device strobed data into the PIO input register (B STB went
momentarily low }. Interrupts for port A would vector to the address
specified in FFOOH and interrupts for port B would vector to the
address specified in FF02H as described in Chapter 7.

The above description illustrates the interfacing for one Z-80 PIO,
The configuration shown could be used for a variety of uses includ-
ing Teletype 1/0, keyboard decoding, high-resolution a-to-d or
d-to-a 1/0O, and 16-line process-control applications. Using similar
procedures to those shown above, the reader can see how multi-PIOs
and additional ROM, PROM, or RAM memory can easily be added
to the system. Further examples of microcomputer systems built
around the Z-80 family of components will be provided in Section
I11.
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SECTION I1

7-80 Software






CHAPTER 9

7-80 Assembler

The previous section described the hardware aspects of the Z-80,
including the inherent instruction set of the microprocessor. Section
IT describes how to use that instruction set efficiently to build sets of
instructions to perform software functions such as multiplication,
division, double and multiple-precision arithmetic, and table and
string manipulation. To facilitate the writing of software programs,
an assembler program is employed. The assembler provides an easy
way to automatically assemble machine language instructions from
a higher-level symbolic assembly language.

MACHINE LANGUAGE

Machine language is the most rudimentary form of any program.
It consists of the actual machine language operation codes and oper-
ands necessary to implement the instructions of the program, ex-
pressed in binary or hexadecimal numbers. Suppose, for example,
that a short program is required to add the numbers from one to ten.
An extremely inefficient way to perform this task is shown below.

XOR A
ADD A1
ADD A2
ADD A3
ADD A4
ADD A,5
ADD A6
ADD A7
ADD A8
ADD A9
ADD A,10
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The program consists of an instruction to clear the A register (the
XOR) and a succession of ten immediate instructions to add the
numbers one through ten to the contents of the accumulator. The
program is written in the mnemonics that Zilog uses for the equiva-
lent machine-language code, along with the register to be used and
the immediate 8-bit data value. To assemble the equivalent machine-
language code, one would have to look up the hexadecimal form of
the operation code and the format of the instruction and write it
beside each mnemonic representation of the instruction as shown
in Fig. 9-1. The figure shows that the XOR A is a one-byte instruc-
tion of the form 10101RRR;, where R is the register required. In this
case, R = 1115, indicating A. The ADD format is a two-byte instruc-
tion of the form 11000110,, followed by an 8-bit field representing
the 8-bit immediate operand. The equivalent machine-language
instruction for an ADD A8, for example, is the op code 11000110,
or C6H, followed by 00001000, or 08H.

The entire program representing the addition of one through ten
could be loaded into the Z-80 microcomputer by means of a control
panel (if the microcomputer has one) or monitor program and then
executed. The actual numbers that would be keyed in are the num-
bers shown in the left-hand column of Fig. 9-1, twenty-one 8-bit
bytes of machine code representing the program.

Let us take another program example to illustrate the machine-
language assembly process once again. This time we will assemble

MACHINE CODE  INSTRUCTION FORMAT INSTRUCTION
AFH 1010 11 11 XOR A
c6 CeH ADD A1
01 0
c6 CoH ADD A2
02 oA
c6 CoH ADD A3
03 03
6 o ADD A, 4
04 044
c6 e ADD A5
05 05
06 CoH ADD A6
06 06H
c6 CoH ADD A,7
07 07H
cé Cen ADD A8
08 08H
c6 CeH ADD A9
09 0H
c6 ] ADD A, 10
0A 0AH

Fig. 9-1. Manucl assembly process program 1.
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a program to add the numbers from one to ten in a slightly different
implementation. We will use the A register to hold the total as
before, but we will let the B register hold the current number to be
added. This will vary from 10 to 1 as we go in reverse, adding 10,
then 9, then 8, and so forth down to 1. At that point, we will detect
that the next number to be added is 0 and stop. The program in
Zilog mnemonics looks like this:

XOR A CLEAR A

LD B,10 SET COUNT TO 10
LOOP ADD AB ADD NEXT NUMBER

DEC B PREPARE NEXT NUMBER

JP NZ,LOOP JUMP IF NUMBER+<0

HALT HALT

The A register is first cleared by the XOR A instruction. Next, the
B register is loaded with 10 by the LD B,10 instruction. The next
three instructions comprise a loop. As long as B holds a number
from 10 to 1, the contents of B will be added to A (ADD A,B), the
contents of B will then be decremented by one (DEC B), and the
jump will be made to the first instruction of the loop which is labeled
“LOOP” as a point of reference of where to return. When the B reg-
ister is decremented, the Z flag is set if the result is zero and reset if
the result is nonzero. If the B register is nonzero (9 through 1) the
JP NZLOOP instruction will detect the nonzero (NZ) and jump
back to LOOP. If the B register holds a 0, the Z flag is set and the
conditional jump back to LOOP will not be made, causing the CPU
to execute the next instruction (HALT).

Manually assembling the machine code for this program is a little
more complicated than the preceding example. First of all, while
the previous program could be relocated or loaded anywhere in
memory, since the instructions contained no addresses, the second
program does contain addresses (JP NZ, LOOP must specify the
address of LOOP in bytes two and three of the instruction). A deci-
sion must therefore be made where in memory this program is to
execute. We will arbitrarily choose location 0100H as the start. The
next step in the assembly process is to calculate the length in bytes
of each instruction and write it opposite each mnemonic. After this
step, the program appears as shown below:

Location Length Instruction

O100H XOR A
LD B,10
LOOP ADD AB
DEC B
JP NZ,LOOP
HALT

— 0Dt i N —
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Now the locations of each instruction can be filled in, using the
length to adjust each location. The location always specifies the first
byte of the instruction.

Location Length Instruction
O100H 1 XOR A
0101H 2 LD B,10
0103H 1T LOOP ADD AB
0104H 1 DEC B
0105H 3 JP NZ,LOOP
0108H 1 HALT
0109H

As a double check on the accuracy of this step, the total length of
the program from the location column (0109H-0100H =9 bytes)
can be compared with the total number of bytes from the length
column, nine. Now the instruction formats can be filled in, as shown
in Fig. 9-2. The only difficult instruction is the JP NZ,LOOP. This
is a three-byte instruction with the last two bytes specifying the con-
ditional jump address. Since the jump is to LOOP, which is at loca-
tion 0103H, this address must go into bytes two and three in reverse
order 03H, 01H, as is the format from time immemorial (or at least
since the 8008 ).

LOCATION LENGTH  MACHINE CODE INSTRUCTION FORMAT INSTRUCTION
0100H 1 AF 10101 [111 XOR A
0101H 2 0604 00] 000} 110] 0600 1670} LD B,10
0103H 1 80 10000 [ 000 LOOP  ADDA.B
0104H 1 05 00] 000] 101 DEC B
0105H 3 c20301 11000 010 0600 0011 0000 G001 | JP NZ,L00P
0108H 1 76 01110110 HALT
0109H

Fig. 9-2. Manual assembly process program 2.

Although it is feasible to assemble long programs by manual
methods, it is extremely uneconomical. There is too much of a
chance for error in calculating locations, filling in instruction fields,
and formatting addresses. In addition to the certainty of rote errors,
there are several other factors that make machine-language opera-
tions unworkable. The most important of these is relocatability.
Program two could execute only at location 0100H. To execute at
another location, the address in the JP instruction would have to be
changed. In larger programs, many addresses would have to be re-
figured and manually assembled. A second factor is ease of editing.
Few programs run the first time and most require several iterations
before the program performs the way that was expected. Each itera-
tion involves adding, deleting, or modifying instructions of the pro-
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gram, necessitating recalculating addresses where they are used in
the program.

THE ASSEMBLY PROCESS

Because of the inherent limitations of manual assembly, all mi-
crocomputer manufacturers offer an assembler program to auto-
matically perform the machine-language function from symbolic
assembly language. Many times the assembler may be run on the
microcomputer itself. In this case, the assembler is a resident as-
sembler. In a few cases, the assembler must be run on another com-
puter, typically an IBM 360/370 configuration. In the latter case,
the assembler is a cross-assembler. In either case, the assembler
quickly assembles programs written in Z-80 or other source assembly
languages, producing an object module representing the machine
code, and a listing of the program in both assembly and machine
language form. A few of the features that an assembler provides are:

1. Symbolic representation of locations, operation codes, and
arguments

2. The ability to intermix comments with the symbolic form of
the instruction

3. Automatic assembly of forward and backward references to

symbolic locations

Automatic representation of various number bases

Expression evaluation

Pseudo-operations or nongenerative assembler instructions

that define locations, equate symbols, reserve memory, and

other convenient features

o Utk

ASSEMBLY FORMAT

The mnemonic representation of instructions have been used
throughout this text. They are simply a convenient way to write
down the instruction as it is much simpler to write “ADD A,B” than
to write “add the contents of the B register to the contents of the A
register.” The mnemonics used for the Z-80 in this text closely follow
the ones used by Zilog. There are some slight differences in repre-
sentation of addressing types. The tables in Chapter 5 or Appendix
C list all instruction mnemonics and the possible addressing formats.
Other microcomputer manufacturers described in this book may use
somewhat different mnemonics in their documentation for their
products.

The standard assembly-language format used in this book is
shown in Fig. 9-3. There are four columns, the label column, the
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op code column, the arguments column, and the comments column.
Each representation of a Z-80 instruction must have an operand.
Most instructions have arguments, such as “LD (HL),R” where
“(HL),R” are the two arguments. Instructions such as EI or HALT
have no arguments. The label field is optional. When a label is
present, it may be one to six alphabetic or numeric characters, the
first character of which must be alphabetic. The optional comments

oP
COLUMN LABEL | [cODE ARGUMENTS COMMENTS
NUMBERS {1 sj7ls ey b1 ) &4
NAME12| ILD (HL) R THIS IS A SAMPLE SOURCE LINE
NAMEL3| [Et ENABLE INTERRUPTS
JP | NZ,STOP GO TO HALT-WAIT FOR INTERRUPT
. RGN N
HOLDS | OPCODE\ ARGUMENTS OPTIONAL
OPTIONAL{ OF 2-4 | ASREQUIRED COMMENTS
NAME CHAR~
OF 1-6 | ACTERS
CHAR~
ACTERS
BLANK  BLANK BLANK

Fig. 9-3. Typical Z-80 assembly language format.

column describes the action of the instruction as was shown in Fig.
9-2. The four columns make up an assembly language line. In gen-
eral, the length of assembly language lines has been determined by
the length of lines on the input devices such as teletypewriters and
punched-card readers. In actual practice, as in the assemblers dis-
cussed in the manufacturers section of this book, Section III, the
end of the line is represented by a carriage return, line-feed code,
or similar device-oriented condition.

In general, each assembly language line (or source line) repre-
sents the complete set of information about one Z-80 instruction.
Each line will generate from one to four bytes representing a Z-80
instruction. One of the several exceptions to this rule is a comment
line, which is originated with a semicolon and is nongenerative; it
generates no machine-language code but serves for reference only.
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A partial typical page from an assembler listing is shown in Fig. 9-4.
The information printed to the left represents the source line num-
ber, the memory location for the first byte of the instruction, and up
to eight hexadecimal digits for the machine-language code of the
instruction (two hexadecimal digits represent one byte). This is
information generated and listed by the assembler. The information
printed to the right represents a direct image of the source line itself.
Additional data printed on the listing would consist of diagnostic

105 . K ok o K KR R R K R R Ak K o Kk kR KK ok R ok o KR R R R R KRR R R R R R R R Rk
106 *  BXASH-00-00 *
107 * *
108 * FUNCTION:THIS SUBROUTINE CONVERTS AN 8-BIT BINARY VALUE*
109 * IN THE C REGISTER TO TWO ASCII HEXADECIMAL DIGITS, *
110 * *
m * CALLING SEQUENCE: (HL)=BUFFER AREA POINTER *
112 * (C)=8-BIT VALUE TO BE CONVERTED *
113 * CALL BXASH *
114 * (RTN WICHARACTERS N BUFFER, BUFFER +1*
115 0¥ AND HL INCREMENTED BY 2} *
116 ;*****=l€***-‘K*******2’{**********"-’****************:k*************
117 ;

118 1036 3EFQ BXASH LD A OFOH

119 1038 Al AND C MASK 1

120 1039 0OF RRCA

121 1A OF RRCA

1221038 OF RRCA

123 103C OF RRCA ALIGN FOR CONVERSION

124 103D CD4710 CALL CVERT CONVERT

125 1040 3EOF LD A, OFH MASK 2

126 1042 Al AND C GET SECOND CHARACTER

127 1043 CDa7ic CALL CVERT CONVERT

128 1046 €9 RET

129

130 1047 €630 CVERT ADD A, 30H CONVERT TO 0-15

131 1049 FEOA cp 10 TEST FOR 0-9

Fig. 9-4. Typical Z-80 listing.

messages indicating assembly errors such as a reference to an unde-
fined, or multiply-defined symbol, invalid arguments such as invalid
hexadecimal digits and the like. Since the listing format is dependent
on the microcomputer system and the kind of assembler, this dis-
cussion is meant to provide a general picture of how a typical listing
would appear and is not meant as a detailed guide.

SYMBOLIC REPRESENTATION

The label column of the source line represents the name of the
location. A program could be written with references only to abso-
lute locations such as “LD A,(1234H).” In this case, however, it
would be necessary to know the exact location to be used, necessitat-
ing definitions of numeric addresses to be used for variables and con-
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stants. It is much more convenient to write “LD A,(RESULT)” than
to specify an absolute location. The assembler will automatically
resolve the symbol “RESULT” into the equivalent machine-code
address. The references to symbolic rather than absolute locations
may be either backward references to previously defined symbols,
or forward references to yet-to-be-defined symbols. Let’s see how
the assembler resolves the symbols with a short program.

The program below compares the contents of the A register to
the contents of the B register by a compare instruction. It then
branches (jumps) out to three addresses dependent on whether
A<B, A=B, or A>B, represented by location LTHAN, EQUAL, or
GREATR. LTHAN is a backward reference, while EQUAL and
GREATR are forward references.

10AAH  LTHAN

1202H CMPARE CP B COMPARE A:B
1203H JP Z,EQUAL JUMP IF A=B
1206H JP M,LTHAN JUMP IF A<B

1209H GREATR 5
14AFH EQUAL

The arrows represent instructions not defined. The locations to the
left represent the locations after assembly. Most assemblers make
two passes. The first decodes the mnemonics, constructs as much of
the instruction as possible, counts the bytes in the instruction, and
constructs a symbol table representing all labels and symbols in the
program. The second pass resolves all addresses by the symbol table.
The reason for two passes is that forward references cannot be re-
solved until the symbol is encountered. After the first pass for the
above program, the symbol table will show:

Symbol Value
CMPARE 1202
EQUAL 14AF
GREATR 1209
LTHAN T0AA

On the second pass, the values of EQUAL and LTHAN will be
filled into the JP instructions at 1203H and 1206H.

Certain symbols in the Z-80 system are reserved and cannot be
used by the programmer. The assembler has set these symbols aside
to define registers or addressing modes. Many of these symbols ap-
pear in the instruction formats of Appendix C. Reserved words in
the Z-80 system would include:
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Register Names: AB,C,D EF H L
Register Pair Names: AF, BC, DE, HL, IX, IY, SP, AF"
Condition Code Flags: C, NC, Z, NZ, M, P, PE, PO

REPRESENTATION OF NUMBER BASES

Another assembler feature present on all assemblers is the ability
to convert from one number base to the other. This means that argu-
ments for instructions may be specified in the most convenient base.
The ADD AN instruction, for example, adds an 8-bit immediate
value to the contents of the A register. Binary, decimal, or hexadeci-
mal values of N may be specified by a suffix of B, no suffix, or H to
enable specifying any of the three number bases: “ADD A,100”,
“ADD A,64H”, and “ADD A,01100100B” all amount to the same
thing, adding 100y, to the contents of the A register. These three
suffixes will be used in the examples of Section II, although the for-
mats actually used in a particular Z-80 assembler undoubtedly will
be different.

EXPRESSION EVALUATION

Most assemblers have limited expression capability. Expressions
may consist of symbolic and literal data and in more sophisticated
assemblers, absolute and relocatable symbols. Expression operators
allow addition, subtraction, multiplication, and in some cases, divi-
sion and shifting. The operators are usually represented by predict-
able symbols, such as “+”, “~”, “*” and “/” for addition, subtraction,
multiplication, and division. Elaborate expressions find little use in
assembly language programs and in some cases may overpower the
assembler, but simpler expressions may be used to assemble the
length of a table, calculate system parameters, and create fields
within data words. Examples will be given in this and other chapters.

PSEUDO-OPERATIONS

In each source line, the portion responsible for generation of the
instruction operation is the op code. There are some assembler oper-
ation mnemonics, however, that do not generate machine-language
instructions but, rather, inform the assembler of special actions to be
taken. These operation mnemonics are called pseudo-ops, since they
are not truly operation codes that represent valid machine-language
instructions. The pseudo-ops discussed here are similar to those in
all assemblers. As they are shown, the parentheses represent an op-
tional label.
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Label (if any) Pseudo-Op Argument (if any)

ORG N

END
NAME1 EQU NAME2
(NAMET) DEFB N
(NAMET) DEFW N
(NAMET) DEFS N
(NAMET) T™>XT STRING

The ORG pseudo-op establishes the origin of the program. When,
for example, “ORG 1200H” is used before the first source line of
code, the assembler location counter will be set to 1200H. Subse-
quent instructions will advance the location counter by the number
of bytes in each instruction so that the assembler may keep track of
symbol locations and the current instruction location. The ORG may
also be used within a program at any time to start assembly from a
new location.

The END pseudo-op is the last statement in a program and signals
the assembler to start pass two or to end the assembly process.

The EQU pseudo-op equates a label to another label or a numeric
value. The EQU is used for convenience in assigning recognizable
names to constants or expressions. An example of an EQU repre-
senting the length of a table is defined below. Here “$” represents
the current assembler location (the contents of the assembler loca-
tion counter).

Source
Location Line
0100H TABLE
0101H
0102H
0103H
0104H
0105H
LENGTH EQU $ — TABLE
T03FH LD IX,LENGTH

The length of the table in this example will be 0106H (the current
location counter)—0100H (the start of the table) or 6 bytes. The
EQU does not generate code, but makes an entry in the symbol
table under “LENGTH” for a value of 6. Later in the program,
when the 16-bit immediate instruction LD IX,LENGTH is en-
countered, the assembler searches the symbol table for the symbol
LENGTH and resolves it with the value 6. Execution of LD IX,
LENGTH will then load 6 into the IX register.
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The pseudo-ops DEFB and DEFW define constants and variables
in the program. The argument for the DEFB is a numeric or sym-
bolic expression that can be resolved in eight bits. The argument
for DEFW must be resolved in sixteen bits. Both pseudo-ops are
necessary because without them the assembler could not generate
tables of data, constants, or locations for variables. The following
source lines generate a table of ten bytes, each byte representing
data from 1 to 10.

0100 o1 TABLE DEFB 1

o101 02 DEFB 2

0102 03 DEFB 3
0103 0405 DEFW 0504H
0105 06 DEFB 6
0106 0708 DEFW 0807H
0108 09 DEFB 10018
0109 0A DEFB AH
O10A

DEFS is a pseudo-op that reserves a number of bytes. In many
cases, it is necessary to set aside a block of memory without actually
filling it with meaningful data, as in allocation of I/O buffers and
working storage areas. The effect of DEFS is to increment the as-
sembler location counter by the argument, which represents the
number of bytes to be reserved. When the assembled object module
is loaded by the loader program after assembly, the block of storage
allocated by the DEFS will not be affected and will retain the mean-
ingless data in the memory area before the load. An alternative way
to reserve storage is to use an ORG pseudo-op. Both of the state-
ments below reserve 22H bytes starting at location 1234H.

1234H BUFFER EQU $
1234H DEFS 22H
1256H NEXTI LDD

$

1234H BUFFER EQU $
1256H ORG $ + 22H
1256H NEXTI LDD

¢

The last pseudo-op discussed here, TXT, is similar to the DEFB
and DEFW in that it generates data for use by the program. The
data in this case is ASCII text data. ASCII representation is used
for most I/O devices and is shown in Appendix E. Alphabetic,
numeric, and special characters must be encoded in ASCII format
before being transferred to the I/O device for printing, display, or
punching. The TXT pseudo-op generates one ASCII character for
each text character in the argument string. The argument string is

143



started by any character and is ended by the same character. It is
convenient to use unusual characters as the delimiters.

0100 43555253 TXT $CURSE YOU RED BARONS$
0104 4520594F

010B 55205245 Delimiter

010C 44204241

0120 524F4E00

0124

The pseudo-ops above are some of the most commonly seen and
will be used in the examples of Section II. The actual pseudo-ops
used in Z-80 microcomputers software will vary, however, and the
reader must refer to the manufacturer’s literature for the mnemonics
and formats used.

ASSEMBLY MECHANICS

Once a program has been written, the actual assembly mechanics
are quite easy. The source statements are entered via the keyboard
and a copy of the source lines is recorded on some type of I/O
medium such as paper tape, magnetic tape, or floppy disc. In many
cases, a utility program called an editor is used to transfer the key-
board input to the storage medium. After the program has been
copied onto the medium, the assembler is loaded into the micro-
computer if a resident assembler is being used, or into the host com-
puter if a cross-assembler is employed. The assembler will then read
the source from the storage medium for the first pass. If paper- or
magnetic-tape cassettes are used as the storage medium, the paper
tape or cassette may then have to be repositioned manually to the
start of the source image; in other cases, the system will automati-
cally restart from the beginning of the input medium. The assembler
then executes the second pass producing a listing such as the one
shown in Fig. 9-3 and an object module. The object module is essen-
tially the machine-language code in a special loader format. The
object module may physically be paper tape, magnetic tape, or
floppy disc. The object module output of the assembler can now be
loaded into microcomputer memory by the loader utility program
and, after the load, be available for execution.

As previously mentioned, few programs run the very first time,
and subsequent reassemblies, loads, and executions will undoubtedly
have to be performed until a final version is produced. For each
iteration (and in some systems there are dozens), the assembler
greatly simplifies the coding process.
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CHAPTER 10

Moving Data—Load, Block

Transfer, and Exchange Groups

This chapter discusses one of the most basic operations in any
computer system, moving data between CPU registers and external
memory, or between two areas of external memory. The moves may
be eight or sixteen bits at a time. The moves may involve transfer-
ring data from one location to another, copying the contents of a
source location to a destination location, or they may involve ex-
changing the contents of both locations. Some of the moves involve
storage and retrieval of data from the portion of external memory
used as a stack. The most sophisticated of the moves transfers up to
64-K bytes in one instruction.

8-BIT MOVES

The 8-bit load group allows data to be moved from a CPU register
to memory or from memory to a CPU register in a variety of ad-
dressing modes. Moving data to, or from, the A register is a special
subset in this group. The A register is given precedence because it
is the primary register used for arithmetic, logical, and shifting op-
erations in the 8080 and 8008; and these uses still carry over to the
Z-80.

Any of the general-purpose CPU registers can be loaded with the
contents of another CPU register or immediate value by a LD RR’
or LD R,N instruction, respectively. The following code loads A, B,
C, D, and E with 0 through 4, respectively, and then reverses the
order (4 through 0) by LD RR’ instructions.
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LD A0 LOAD O

LD B,1 LOAD 1
LD C,2 LOAD 2
LD D,3 LOAD 3
LDE4 LOAD 4
LD H,A SAVE A
LD LB SAVE B
LD AE ETO A
LD B,D DTOB
LDD,L BTOD
LD EH ATOE

When data is to be moved from memory to CPU registers, there
are several methods that can be used to implement the move. These
methods are “mirrored” for moving the data from CPU registers
back to memory, so that a good way to illustrate the move is to show
how data can be moved from one block of memory to another.
Obviously, the easiest way to implement a move of this kind is with
the block-transfer instructions, but the discussion of this group will
be left until later in the chapter. The general methods for moving
eight bits of data at a time from memory to CPU registers or back
again are:

1. Using any CPU registers and HL as a pointer in register in-
direct mode

2. Using indexed addressing with any CPU registers

3. Using direct (extended type) addressing with the A register
only

4. Using BC or DE register indirect addressing with the A register
only

We will discuss each of these methods in turn and illustrate 8-bit
data movement to and from CPU registers with a short program for
each method.

8-BIT MOVES USING HL

The following program loads the A, B, C, and D registers with
four variables from memory labeled VAR1, VAR2, VARS3, and VAR4.
Register pair HL is first set up as a pointer by a 16-bit load instruc-
tion that loads the start of the 4-byte block into HL. Each time the
next variable is loaded, the HL register is incremented by one to
point to the next byte of the block.

LD HL,START POINT TO START

LD A,HL LOAD VARI1

INCHL POINT TO START + 1
LD B,(HL) LOAD VAR2
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INCHL POINT TO START + 2

LD C,(HD LOAD VARS

INC HL POINT TO START + 3

LD D,(HL) LOAD VAR4
START EQU $ THIS EQUATES START TO VARI
VART DEFS 1 THESE VARIABLES FILLED
VAR2 DEFS 1 IN WITH VALUES SOME-
VAR3 DEFS 1 TIME DURING PROGRAM
VAR4 DEFS 1 EXECUTION

Note that the above method worked quite well as the four vari-
ables were in one contiguous block. If the variables were in random
locations, a little more work is involved as shown next in a short
program that stores the contents of A, B, C, and D in four locations
labeled STOR1, STOR2, STOR3, and STOR4. Each time a new
register is stored, the HL register pair must be loaded with a new
address since it cannot simply be incremented or decremented.
Although there are many other ways to implement this problem in
the Z-80, programs written for the 8008 had to use this method to
access random data, as only the HL register pair was available as
a pointer.

LD HL,STOR1 STOR1 ADDRESS

LD (HL),A STORE A

LD HL,STOR2 STOR2 ADDRESS

LD (HL),B STORE B

LD HL, STOR3 STOR3 ADDRESS

LD (HL),C STORE C

LD HL,STOR4 STOR4 ADDRESS

LD (HL),D STORE D
STOR1 DEFB O THESE VARIABLES INITIALLY SET

¢ TO 0 BY DEFB. THEY WILL

STOR2 DEFB O BE FILLED WITH A-D.

§
STOR3  DEFBO

STOR4 DEFB O

8-BIT MOVES
USING INDEX REGISTERS

The index registers IX and IY in the Z-80 are registers that are
analogous to the HL register. Each of the index registers is a data
pointer, but with an important difference. The effective address is
obtained by adding an 8-bit displacement value to the contents of
the index register. This means that within each instruction a dis-
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placement can be added to the pointer to access data within a
“block” of 256 bytes, starting from the location the index register
points to —128 bytes and ending with the index register +127 bytes
as shown in Fig. 10-1.

LOCN-128

LOCN-2
LOCN-1
IX OR Y st LOCN+0)
LOCN+1
LOCN+2

LOCN+127

Fig. 10-1. Index register block access.

Suppose that the requirement was to store the A, B, C, and D
registers into locations BLOCK —4, BLOCK, BLOCK + 4, and
BLOCK + 8, respectively. The following instructions would accom-
plish the task:

LD IX,BLOCK POINT TO BLOCK

LD (IX — 4)A STORE A INTO BLOCK — 4
LD (IX + 0),B STORE B INTO BLOCK

LD (IX + 4),C STORE C INTO BLOCK + 4
LD (IX + 8),D STORE D INTO BLOCK -+ 8

The displacements in the third byte of the instruction would be
—4, 0, 4, and 8§, respectively. Here the process of storing data within
the 256-byte block was made much more efficient than the example
using the HL register pair pointer. Or was it? Let's compare the rel-
ative sizes and timing of the two programs. The first program using
the HL registers used four three-byte instructions (LD HL,STORX)
and four 1-byte instructons (LD (HL),D) for a total of sixteen
bytes and 17 microseconds. The program above used five 3-byte in-
structions for a total fifteen bytes and 22.5 microseconds! It appears
that the first implementation was faster and only slightly more ex-
pensive in terms of memory usage than the second. This is only one
example of how execution speeds and memory storage requirements
must be compared between one method of implementation and an-
other if one is concerned about program efficiency.
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If the IY register was to be used instead of the IX, the instruction
format would be virtually identical, with “IY” substituted for “IX.”
The index register-oriented instructions can be used to advantage
for moving data as in the following routine that moves the three
bytes in BLK2 through BLK2 + 2 to BLX1 through BLK1 + 2. The
move is implemented in reverse fashion starting at BLK2 + 2 and
BLK1 + 2. IX holds the source pointer while IY holds the destination
pointer. Both index registers are decremented by a DEC IX or DEC
IY instruction.

LD IX,BLK2 + 2 INITIALIZE START OF SOURCE

LD 1Y,BLKT + 2 INITIALIZE START OF DEST
NXT1 LD B,(IX) SAME AS (IX + 0)

LD (IY),B SAME AS (IY + 0)

DEC IX POINT TO NEXT BYTE SOURCE

DEC 1Y POINT TO NEXT BYTE DEST
NXT2 LD B,(X) NEXT

LD (1Y),B

DECIX

DEC 1Y
NXT3 LD B,(IX) NEXT

LD (Y)B

Code such as the above is inefficient in memory storage because
the same basic operation is repeated many times. The transfers at
NXTI, NXT2, and NXT3 are almost identical. If 100 bytes were to
be transferred, it would of course be ludicrous to repeat the identi-
cal actions 100 times. The most efficient way to implement repetitive
actions is by looping back to the same set of instructions for as many
times, N, as required. This is done in the following program which
uses IX and IY as source and destination pointers as before and
moves 100 bytes from BLK2 to BLKI1. The initial count, N == 100,
is held in the C register and is decremented down to 0. The loop at

LD IX,BLK2 STRT OF SRC BLK
EXECUTED ONCE ONLY LD 1Y,BLK1 STRT OF DST BLK
LD C,100 SET N = 100

LOOP LD B/(iX) LOAD BYTE

LD (Y),B STORE BYTE
100 INC IX BMP IND BY ONE

[
TIMES INC 1Y

DEC C N — 1
JP NZLOOP GO IFNTDN (Z=1)
DONE DONE HERE
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LOOP is executed 100 times as long as N = 100 to 1, the Z flag is not
set and the conditional branch JP NZ,LOOP is made. IX and IY are
incremented by one each time through the loop to point to the next
position in the blocks.

The values of IX, 1Y, C, and B for the first 5 and last 5 iterations
of the loop are shown in Fig. 10-2.

X
BLK2
BLK2+1
BLK2+2
BLK2+3
BLK2+4
BLK2+5

BLK2+9%
BLK2+97
BLK2+98
BLK2+99
BLK2+100

150

Y L B
BLK1 100 -
BLK1+1 9 BYTE 1
BLK1+2 % 2
BLK1+3 97 3
BLK1+4 9% 4
BLK1+5 95 BYTE 5

|

BLK1+96 4 BYTE 96
BLK1+97 3 97
BLK1+98 2 98
BLK1+99 1 %9
BLK1+100 0 BYTE 100

Fig. 10-2. Indexing example.

8-BIT MOVES USING

THE A REGISTER

INITIALIZATION
ITERATION 1 (AFTER)
2

3
4
5

|
!

ITERATION 96 (AFTER}
9
98
9
100

AND EXTENDED ADDRESSING

The A register can be loaded or stored using extended address-
ing. In this case, the address specified is in the instruction itself, and
completely random addressing can be done without the need for

MEMORY

} 8-BITMOVES VIA A REGISTER
AND EXTENDED ADDRESSING

[ A 1

8-BIT MOVES A REGISTER
TO OTHER CPU REG ISTERS

B

C

D

E

H

L

Fig. 10-3. A register used for random addressing.



setting up any pointers or index registers. This instruction is prob-
ably the one most frequently used for moving eight bits of data into
CPU registers and for storing CPU register data via the A register,
as shown in Fig. 10-3. The A register is the path for all of the other
CPU registers in this case.

The following routine loads A, B, C, and D with VAR1, VAR2,
VAR3, and VAR4 after first storing the registers in STRA, STRB,
STRC, and STRD using this kind of addressing.

LD (STRA),A STORE A

LD A,B

LD (STRB),A STORE B

LDAC

LD (STRC),A STORE C

LD A,D

LD (STRD),A STORE D

LD A,(VAR4) GET VAR4 FOR D
LD D,A

LD A,(VAR3) GET VAR3 FOR C
LD C,A

LD A,(VAR2) GET VAR2 FOR B
LD B,A

LD A,(VART) GET VAR1 FOR A

8-BIT MOVES USING
THE A REGISTER AND BC OR DE
REGISTER INDIRECT

The four instructions LD A,(DE); LD A,(BC); LD (DE),A; and
LD (BC),A use BC or DE as pointers in a manner similar to the
way HL is used as a pointer for the previously discussed moves.
Here again, this addressing mode is very efficient as long as the data
being accessed is contiguous data in a block or table. A few exam-
ples ago, the use of the index registers for moving data from one
block to another was presented. The following routine does the
same, and it can be seen that the actions are virtually identical. BC

LD BC,BLK2 START OF SOURCE BLOCK
LD DE,BLK1 START OF DEST BLOCK
LD L,100 SET N = 100

AGAIN LD A,BOC LOAD BYTE
LD (DE)LA STORE BYTE
INC BC BUMP INDICES BY ONE
INC DE
DECL N — 1

JP NZ,AGAIN GO IF NOT DONE (Z = 1)
DONE

151



points to the source block, DE points to the destination block, and
L contains the count, 100 in this case.

16-BIT MOVES

Data movement discussed above involved moving eight bits at a
time. The Z-80 has many instructions to move data two bytes, or
sixteen bits at a time, however. Data moved in this width are loaded
or stored between register pairs BC, DE, and HL; registers SP, 1X,
and IY and memory. Sixteen-bit data operations allow the following:

1. Immediate loads of BC, DE, HL, SP, IX, IY

2. Transferring data from memory to BC, DE, HL, SP, IX, or IY,
or the reverse

3. Transferring data from the HL, IX, or IY to SP

4. Pushing and popping BC, DE, HL, AF, IX, or IY to the stack

Many of the loads of the register pairs, SP, or index registers will,
of course, involve loads of memory addresses. Sixteen bits will hold
all 64-K external-memory addresses for the Z-80, and the instructions
in this group have specifically been set up for handling address-
related data. If convenient, though, all instructions can be used to
load and store nonaddress operands, such as 16-bit double-precision
values or ASCII character data.

IMMEDIATE LOADS OF 16 BITS

Many of the immediate loads have previously been illustrated in
this chapter. BC, DE, HL, IX, and IY are typically loaded with the
starting address of data blocks containing data to be processed as in:

LD  BC,DATAI LOAD ADDRESS OF DATA 1
LD DEDATA2 LOAD ADDRESS OF DATA 2
LD HL,DATA3 LOAD ADDRESS OF DATA 3
LD IX,DATA4 LOAD ADDRESS OF DATA 4
LD 1Y,DATAS LOAD ADDRESS OF DATA 5

DATAI1 DEFS 100 DATA BLOCK OF 100 BYTES
DATA2 DEFS 50 DATA BLOCK OF 50 BYTES
DATAS DEFS 20 DATA BLOCK OF 20 BYTES
DATA4 DEFS 60 DATA BLOCK OF 60 BYTES
DATAS DEFS 100 DATA BLOCK OF 100 BYTES

The stack pointer register, SP, almost always points to the area of
memory allocated as the stack area, however, and not to a predefined
data block. The SP is initialized to an address value that represents
the fop of stack by an LD SP,NN instruction. Since the SP always
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points to the last used location in the stack and is decremented be-
fore storage of data is performed, the SP must be loaded with an
address value corresponding to one greater than the first location to
be used as the stack. If, for example, stack storage is to occupy 100H
bytes from address 3FFFH down to 3F00, the SP would be initial-
ized as follows:

0100 LD SP,4000H LOAD TOP OF STACK
OR
L{D SP,TOPS
3F00 DEFS 100H DEFINE STACK AREA
4000 TOPS EQU $ OF 256 BYTES

Subsequent pushes to the stack (there can be no pops as there has
been no data storage in the stack at this point) will decrement the
SP by one before storage. The first byte of data will be stored at
3FFF, the next at 3FFE, and so forth.

16-BIT TRANSFERS TO AND FROM MEMORY

The BC, DE, HL, SP, 1X, 1Y, or SP registers may be loaded from
or stored to memory by instructions in this group. As an example,
suppose that the BC, DE, and HL registers are to be loaded with the
addresses of three blocks of memory, but their contents are to be
saved and restored for later use. As an alternative to storage in the
stack (covered a little later in this chapter), the three register pairs
may be saved by:

LD (SAVB),BC SAVE BC
LD (SAVD),DE SAVE DE
LD (SAVH),HL SAVE HL

SAVB DEFS 2 STORAGE FOR BC
SAVD DEFS 2 STORAGE FOR DE
SAVH DEFS 2 STORAGE FOR HL

Notice that the storage locations reserved for each of the register
pairs must be two bytes. Later, when the register pairs are to be re-
loaded with their original values, the instructions below may be
executed:

LD BC,(SAVB) RESTORE BC
LD DE/(SAVD) RESTORE DE
LD HL,(SAVL) RESTORE HL

As in many groups of instructions, the format of the assembly lan-
guage arguments is extremely important. In the following code, LD
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HL,SAVL loads the address of SAVL (1000H) while LD HL,
(SAVL) loads the contents of SAVL.

L&D HL,SAVL LOADS T1000H
LD HL,(SAVH) LOADS 1234H
1000 SAVL DEFW 1234H CONTENTS OF 1000H
IS 1234H

16-BIT DATA TRANSFERS TO THE STACK

The Z-80 allows the transfer of data from the HL, IX, and IY reg-
isters to the stack pointer register, but not the reverse. Examples of
these transfers are:

LD iP,HL HL TO SP
LD ngP,IX IX TO SP
LD SP,IY IY TO SP

16-BIT STACK OPERATIONS

The title of this subsection is a misnomer, for all stack operations
involve the transfer of sixteen bits or two bytes of data at a time.
Eight bits cannot be pushed or popped to the stack as in other micro-
computers. This is not a great disadvantage, although it may create
a little more overhead when only one register is to be saved in the
stack for temporary storage. In the Z-80 register pairs BC, DE, HL,
AF, and registers IX and IY may be pushed and popped to the
memory stack. As each is pushed to the stack, the data in the high-
order byte of the register pair is put into the top of stack —1 and
the data in the low-order byte is put into top of stack —2. The SP
register is decremented by one before each byte is pushed. The fol-
lowing explains stack action on a push of a register pair, IX or IY.

LDQ SP,1000H INITIALIZE SP TO 1000H

PUSH AF A TO OFFFH, F TO OFFEH

PUSH BC B TO OFFDH, C TO OFFCH

PUSH DE D TO OFFBH, E TO OFFAH

PUSH HL H TO OFF9H, L TO OFF8H

PUSH IX IX15-8 TO OFF7H, 1X7-0 TO OFF6H
PUSH 1Y IY15-8 TO OFF5H, IY7-0 TO OFF4H

As the reader would suspect, the F(lags) register is treated as an
8-bit lower-order register on stack operations.
As data is popped from the stack, the process is reversed. The
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low-order byte is pulled from the top of stack and put into the F, C,
E, L, IXi, or 1Yy, registers, the SP is then incremented and the
high-order byte is put into the high-order register of the register
pair or higher-order byte of the IX or IY registers.

Stack storage is employed for the following reasons:

1. Storage of the environment during interrupt processing
2. Temporary storage of CPU registers

3. As a way to transfer data between CPU registers

4. Subroutine use

Stack operations during interrupt actions and subroutine use will
be discussed later. The other two uses are somewhat obvious. At any
time, data from one of the register pairs, IX or IY, may be saved in
the stack by execution of a PUSH instruction. Later the data may be
retrieved by a POP instruction. There is no condition that states that
the data POPped must be restored to the same register pair and the
stack may therefore conveniently be used to transfer data between
registers, as in the following example which exchanges the BC and
IY, and DE and IX registers.

PUSH BC STACK NOW HAS BC
PUSH 1Y STACK NOW HAS BC, 1Y
PUSH DE NOW BC, lY, DE

PUSH IX NOw BC, Iy, DE, IX
POP DE iX TO DE

POP X DE TO IX

POP BC IY TO BC

POP 1Y BC TO IY

The stack register may also be used to facilitate processing of
strings of data, although care must be taken to maintain the stack
pointer properly when this is done. As an example of this, suppose
that locations 177FH through 1700H had a string of ASCII charac-
ters with the first character in 1700H and the last in 177FH. (Data
can easily be stored in this fashion by use of the increment type in-
structions.) The following code processes each of the characters,
one at a time, providing that the stack is not used for any other
storage anywhere in the processing. This means that no maskable or
nonmaskable interrupts may occur or that no other routines that use
the stack may be employed during the time the processing occurs.

LD (SAVP)SP SAVE CURRENT STACK POINTER
LD SP,1700H INITIALIZE SP TO DATA

POP BC FIRST BYTE IN C, NEXT IN B
(PR(!)CESS) (LOOP HERE 128 TIMES)

LD SP,(SAVP) RESTORE SP TO ORIGINAL STACK
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Although the processing above will certainly work, it is probably
best to process the string data by other means, especially since inter-
rupts will cause catastrophic results, The block instructions imple-
mented in the Z-80 will permit processing of string data in a much
cleaner fashion.

BLOCK TRANSFER INSTRUCTIONS

The Block Transfer instructions in the Z-80 offer a means to move
up to 64-K bytes of data automatically or semi-automatically from
one area of memory to another. The ground rule for moving data is
the following:

NEVER MOVE LARGE BLOCKS OF DATA FROM ONE AREA
OF MEMORY TO ANOTHER UNLESS UNAVOIDABLE!

There are many ways to avoid large data movements. Data should
be input or output directly to a buffer in which they can be proc-
essed. Tables can be set up properly to avoid reformatting of data.
Programming structures such as linked lists may be employed in-
stead of contiguous tables. The primary reason for avoiding block-
data transfers is the enormous amount of time that they require. To
move 1000 bytes of data at 10 microseconds per byte requires 10
milliseconds or 1/100 of a second. Although the time required per
byte in the Z-80 is about one half of this, block movements still take
large amounts of time in comparison to other program operations.

With the above proviso in mind, let us see how the block transfer
instructions in the Z-80 can be set up. The first of these is the LDI
instruction. The LDI requires that the HL register pair points to the
source data block and that the DE register pair points to the desti-
nation data block. The BC register pair contains a byte count. To
transfer 100H bytes of data from a data block starting at location
1000H to a data block starting at 2000H, the following code could
be employed.

LD HL,1000H SET UP SOURCE PNTR
LD DE,2000H SET UP DEST PNTR
LD BC,100H 100 BYTES

After initialization, each time an LDI was executed a byte would
be transferred from the location pointed to by the HL to the location
pointed to by DE. The byte count in BC would then be decremented
by one. When the byte count reached zero, the P/V flag would be
reset. The P/V flag therefore can be tested to determine the end of
the transfer. The following code transfers the data:
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LD HL,1000H SET UP SOURCE PNTR
LD DE,2000H SET UP DEST PNTR

LD BC,T00H 100 BYTES
LOOP LDI1 TRANSFER BYTE
JP PE,LOOP GO IF NOT DONE
DONE <

Note that the P/V flag is set if the byte count is not equal to 0.
This is equivalent to “parity even” or PE. The jump will be per-
formed as long as P/V equals 1 and 100H bytes have not been trans-
ferred.

This block transfer instruction is “semi-automatic” compared to
the LDIR that transfers the specified number of bytes in BC auto-
matically in one instruction. What is the advantage in having some-
thing other than a fully automatic block transfer? One obvious ad-
vantage is that the LDI allows intermediate processing to occur
between the transfer and the jump back to the next transfer. Suppose
that the data must not only be moved, but that the movement be
terminated on zero data. Thus, a maximum of N bytes would be
moved; however, if any of the source bytes were 0 the move would
stop. The following code terminates the move if the next byte to be
moved is zero. The source byte about to be moved is first tested
before the move occurs, and if zero, the move is terminated. The OR
A, instruction tests the zero/nonzero status of the byte without
affecting the byte. The Z flag is reset if any bit in the byte is a one
and set if all bits are zeros.

MOVE LD HL,1000H SET UP SOURCE PNTR
LD DE,2000H SET UP DEST PNTR

LD BC,100H 100 BYTES MAXIMUM
NEXT LDt TRANSFER BYTE

JP PO,DONE GO IF DONE (MAXIMUM)

LD A,HL) GET NEXT BYTE

OR A TEST BYTE FOR ZERO

JP NZ,NEXT CONTINUE IF NOT ZERO
DONE <

Another advantage of the LDI is that it can be used to move non-
contiguous data. Suppose that there is a table of data that is 100H
bytes long and that every fourth byte is to be moved to a new data
area as shown in Fig. 10-4. The number of transfers must be 256/4
or 64 and the new storage area will hold the source bytes as shown.
The following code moves the data:

LD HL,SRTAB SET UP SOURCE PNTR
LD DE,DSTTB SET UP DEST PNTR
LD BC,100H/4 SET UP BYTE COUNT
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NEXT LD1 TRANSFER BYTE

INC HL POINT TO NEXT BYTE
INC HL
INC HL
JP PE,NEXT GO IF NOT DONE
DONE §
SOURCE TABLE DESTINATION TABLE

SRTAB BYIE 1 " bstee
+} +]
+2 +2

+3 +3

+ BYE 2

+63 o1

+252 BYTE 64
+253
+254
+255

Fig. 10-4. Moving noncontiguous data with LDL

There are several subtleties in the above code. The expression
100H/4 will work in many assemblers and enables an assembly-time
calculation of the number of bytes. After the LDI has transferred
the Ith byte, the HL register points to I + 1. The three increments
bump the HL to point to I + 4.

If no processing is to take place between the transfer of individ-
ual bytes, then the LDIR may be used. The LDIR is set up in exactly
the same manner as the LDL If N bytes are to be transferred, how-
ever, the LDIR will execute N times. For each transfer, the LDIR
takes 5.25 microseconds (the LDI takes 4.0 microseconds) except
for the last transfer (BC = 0) in which the LDIR takes 4.0 micro-
seconds.

LD HL,STRTS SOURCE START
LD DESTRTD DEST START

LD BC,64 # OF BYTES
LDIR TRANSFER 64 BYTES IN
DONE < ABQUT 335 MICROSEC.

In the LDI and LDIR instructions, data is transferred in forward
order, that is, it is transferred starting from low memory and ascend-
ing to high memory. The only difference between the LDI and
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LDIR and the LDD and LDDR is that the latter two transfer data
in descending order. HL. and DE are set to the ending address of
the source and destination data blocks, respectively, and each is
decremented to point to the next lower byte by the LDD or LDDR.
To transfer data from the previous example, the code would read:

LD HL,ENDS SOURCE END

LD DE,ENDD DEST END

LD  BC,64 # OF BYTES

LDDR TRANSFER 64 BYTES
DONE
STAB  DEFS 64 SOURCE TABLE
ENDS EQU $—1
DTAB DEFS 64 DESTINATION TABLE

ENDD EQU $-—1

EXCHANGE GROUP

There are six instructions in the exchange group. Two of them
transfer data between the current set of CPU registers and the
primed (”) set. Three others allow the HL and index registers to
exchange their contents with the top of the stack. The last simply
exchanges the contents of DE with HL.

When the CPU is initialized, one set of the two eight-register sets
becomes the current set. The other set containing A’, F’, B/, C’, D,
E’, H’, and L/ may be accessed via the two exchange instructions
EX AF,AF’ and EXX. EX AF,AF’ swaps the contents of A and F
with A” and F’. To temporarily store A and F, the following code
could be used:

EX AFAF SAVE AF
PROCESSING
EX AFAF RESTORE AF
Likewise, EXX swaps BC, DE, and HL with BC’, DE’, and HL".
EXX SAVE BC, DE, HL
LD BC,NEWI1 NEW ADDRESSES
LD DE,NEW2
LD  HLNEWS3
PROCESSING
EXX RESTORE BC, DE,HL
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EX AF,AF’ and EXX would probably be used most frequently in
saving the environment during interrupt processing. One reason for
not using the instructions at other times is that if the primed registers
are used for temporary storage and also used for interrupt storage,
it is very probable that some of the temporary data will be de-
stroyed if interrupts are permitted while both sets of CPU registers
are being used. It is best to reserve the primed registers for process-
ing use only and utilize the stack or memory for temporary storage.

The EX DE,HL instruction swaps the contents of register pair
DE and HL. The instruction is useful for moving data from the DE
to HL for the limited arithmetic operations that can be performed
to HL. As an example of this, suppose the contents of DE were to
be doubled. The following code would move DE to HL, add HL to
itself to double the contents and move the result back into DE.

EX DEHL DE TO HL
ADD HL,HL HL + HL TO HL
EX DEHL HL TO DE

The remaining three instructions in this group exchange the con-
tents of the top of stack with either HL, IX, or IY. The SP is not
affected by the swap. Clearly, the manufacturer had a good reason
for the exchange of HL and top of stack [EX (SP),HL — Intel] and
the index registers [EX (SP), IX or . ... IY — Zilog]. It will be left
as an exercise for the reader to discover for himself what those rea-
sons are. (Seriously, one application is to permit adjustment of the
return address for a call to enable a return to a location other than
the one following the call.)
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CHAPTER 11

Arithmetic and Logical Operations—
8-and 16-Bit Arithmetic Group,

Decimal Arithmetic

The arithmetic and logical operations covered in this chapter in-
clude adds, subtracts, logical ors, anps, exclusive ors, compares,
increments, and decrements. All of these operations can be per-
formed in 8-bit precision and the adds, subtracts, increments, and
decrements can also be performed in 16-bit precision using register
pairs. The functions performed in these groups are some of the most
basic operations that a computer can perform. Additionally, the Z-80
allows bed or decimal adds and subtracts by means of a special
“decimal adjust.”

8-BIT ARITHMETIC OPERATIONS

In 8-bit arithmetic operations, two 8-bit operands are added or
subtracted. One of the operands must be in the A register while the
other operand may be an immediate operand, an operand in an-
other CPU register, or an operand from memory. The result of the
operation always goes to the A register. The add or subtract func-
tion sets the condition-code flags in the flag register on the result of
the operation as discussed in Chapter 6. A variety of addressing
modes may be used to fetch the second operand, including register
indirect and indexing addressing.

The simplest operation in this group is an 8-bit add. If a checksum
of a block of 63 bytes was to be computed, the following routine
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would add together all 63 bytes after clearing the A register. The
checksum is then stored at the beginning of the block in location
BLK. (A checksum such as this would be used for comparison pui-
poses on subsequent retrievals of the data block; by repeating the
add and comparing the result with the inherent checksum, the valid-
ity of the data could be established.)

Sup A A — A CLEARS A
LD IX,BLK+63 SET PNTR TO END OF DATA
LD B,63 SET COUNT TO 63
LOOP ADD  A,(IX) ADD NEXT BYTE
DEC IX INDEX — 1
DEC B COUNT — 1
JP NZ,LOOP CONTINUE IF NOT 63 BYTES
DONE LD (1X),A STORE A IN BLK
BLK DEFS 64 CHECKSUM + 63 DATA BYTES

In the above program, the last instruction LD (IX),A stored the
checksum held in A to the location pointed to by the contents of
the index register IX. As the data started at BLK+63 and ended at
BLK+1, the index register pointed to BLK+0 after the last iteration
of the loop and the checksum could be stored without further ad-
justment to the index register.

If the block of data were to be read in from the 1/O device and
the checksum to be calculated and compared, a subtract instruction
could be used to advantage.

LD IX,INBLK+1 SET PNTR TO START OF DATA

LD A(X-1) GET CHECKSUM

LD B,63 SET COUNT TO 63
LOOP SUB  (IX) SUBTRACT NEXT BYTE

INC IX POINT TO NEXT BYTE

DEC B COUNT — 1

JP NZ,LOOP CONTINUE IF NOT 63 BYTES
DONE OR A TEST CONTENTS OF A

JP NZ,ERROR GO IF ERROR IN DATA
NERROR NO ERROR

ERROR

The IX register is first set to the start of the data at INBLK+1.
The next instruction loads the checksum byte at INBLK (IX—1 is
(INBLK+1) — 1 = INBLK) into A. Then the data at INBLK+1
through INBLK+63 is subtracted from the partial checksum in A.
At the end (DONE), the contents of A should be 0 if the data is
valid. An or is done which simply serves to set the flags for the con-
ditional branch JP NZ ERROR. If A is not zero, location ERROR is
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executed, presumably an error routine, otherwise the next “instruc-
tion at NERROR is executed.

When two 8-bit operands are added or subtracted the sign, zero,
parity, and carry flags are affected. Examples for use of the zero flag
have been presented previously. The sign flag may be tested by a
conditional jump on P(ositive) or M(inus). The following example
tests for an ASCII character between 30H and 39H (decimal 0
through 9).

LD A,(CHAR) GET ASCIl CHARACTER

TESTO9 SUB  30H SUBTRACT 30

JP M,ERROR GO IF LESS THAN 30

SUB 10 SUBTRACT 10

JP P,ERROR GO IF 3A OR GREATER
OK ADD A,10 THiIS CHARACTER 30 TO 39

In this somewhat inefficient test (a compare is called for in place
of the SUB 10), the ASCII character is loaded and an immediate
30H is subtracted from the character. If the character is less than
ASCII 30H (decimal 0), the result is negative, the sign flag is set,
and a jump to ERROR is taken. If the character is greater or equal
to 30H, 10 is subtracted from the first result yielding a negative num-
ber for all valid ASCII characters (now 0 through 9) or a positive
number for all ASCII characters greater than ASCII 39H (decimal
9). A test at the JP causes a jump to the error routine if this limit
check fails. Finally, the decimal equivalent of the ASCII character
is restored by adding 10 to yield 0 — 9 for the converted character.

If an add or subtract results in an effective add of two 8-bit oper-
ands of similar signs, overflow is possible and can be tested by a
conditional branch on the P/V flag. Overflow will occur and the P/V
flag will be set if the result exceeds —128 (80H) or +127 (7FH).
The following code tests for overflow and effects a jump to an error
routine if overflow has occurred.

LD A,(OPND1) LOAD OPERAND 1

LD B,A INTO B

LD A,(OPND2) LOAD OPERAND 2

ADD AB ADD OPND 2 TO OPND 1

JP PE,ERROR JUMP {F OVERFLOW
NERROR < NO OVERFLOW HERE

The carry flag finds most use during double-precision or multiple-
precision operations. If the required precision is 16 bits, many opera-
tions can be implemented by the 16-bit arithmetic instructions dis-
cussed later in this section. For the general case, however, where
the precision may exceed 16 bits, the Z-80 has addition and subtrac-
tion instructions that make use of the carry and allow operands to
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be any size, one byte to n bytes. If an operand of four bytes or 32
bits is required, for example, numbers from 0 to 4,294,967,296 may
be handled (or the equivalent range of negative and positive num-
bers). To add or subtract two four-byte operands, a carry or borrow
must be propagated to the higher-order bytes. This means that an
add or subtract to the three higher orders will not suffice; there must
be an add or subtract with carry (carry also represents a borrow
in the Z-80 and other machines). The following code performs a
four-byte add and subtract on two four-byte operands located in
OP1 and OP2. OP2 is added or subtracted to OP1 and the result put
in OP1. The first add or subtract is of the lowest order and no carry
or borrow exists from previous orders, therefore, an ADD or SUB is
used. Subsequent adds and subtracts utilize the ADC (add with
carry) and SBC [subtract with carry (borrow)] instructions to
propagate the carry or borrow.

ADBbD4 LD IX,OP1+3 POINT TO LOW-ORDER BYTE
LD 1IY,OP2+3 POINT TO LOW-ORDER BYTE

LD AX)
ADD  A,(Y) OP1 + OP2 BYTE 3
LD (1X),A STORE RESULT IN OP1+3
LD A (IX-1)
ADC A (Y—1) OP1 + OP2 BYTE 2
LD (IX—1),A STORE RESULT IN OP1 + 2
LD A, (IX—2)
ADC  A(Y-2) OP1 + OP2 BYTE 1
LD (1IX—2),A STORE RESULT IN OP1 + 1
LD A (IX=3)
ADC A (Y-3) OP1 4+ OP2 BYTE O
LD (IX—3),A STORE RESULT IN OP1
DONE g
SuB4 LD IX,OP1+3 POINT TO LOW-ORDER BYTE
LD 1Y,OP2+3 POINT TO LOW-ORDER BYTE
LD B,4 INITIALIZE COUNT
XOR A CLEAR CARRY
LOOP4 LD A,(IX) LOAD BYTE
SBC  A(Y) OP1 — OP2
LD (1X),A STORE RESULT
DEC iIX POINT TO NEXT HIGH-ORDER
DEC 1Y
DEC B DECREMENT COUNT

JP NZ,LOOP4 GO IF NOT DONE
DONE g

The examples of add and subtract illustrate two different ap-
proaches to the solution of the same problem. The add example
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utilizes a linear or in-line approach while the subtract example is an
iterative approach using a loop. In the add, a separate load, add, and
store is performed for each of the four bytes. All but the first add
adds in the carry from the lower-order byte by an ADC instruction.
The subtract example has some subtleties in it. The index registers
are initialized to the low-order address of the operands. A count of
four for the four subtracts is set up in the B register. For the first
add, the carry must be cleared and an XOR instruction is used to ac-
complish the clear. An XOR always clears the carry. Now the first
operands are subtracted and the result stored in the low-order byte
of the destination operand. The IX and 1Y registers are decremented
by one to point to OP1+2 and OP2+2. The count in the B register is
decremented and, because it is not yet zero, the jump is taken to
LOOP4. On the next subtract, the carry will be set, or reset, depen-
dent on the last SBC instruction since no other instruction in the
loop affects the carry. After four subtracts from low to high order,
the count in B is 0 and the instruction at DONE is executed and the
result is in OP1 to OP1+3.

8-BIT LOGICAL OPERATIONS

The 8-bit logical operations are similar to the 8-bit adds in that
the same addressing modes are permitted and the A register con-
tains the primary operand and holds the result at the end of instruc-
tion execution. The three logical operations that can be performed
are the logical anp, or, and exclusive or. The rules for these logi-
cal operations are shown in Table 11-1.

Table 11-1. Logical Operations

Instruction Logical Operation Symbol
AND 0 0 i 1 A is the symbo! for AND
ALATAZAL
¢} 0 o 1
OR 0 0 1 1 V is the symbol for OR
vivliyv22vl?
0 1 1 1
XOR 0 0 1 1 @ is the symbol for exclusive OR
®o 1 DO DI
0 1 1 o]

Each logical operation is done for every bit position on a bit-by-bit
basis. One bit position does not affect any other bit position and
consequently there can be no carry.
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The anp instruction can be used to mask in, or mask out, un-
wanted fields within data bytes. Suppose, for example, that an 8-bit
byte in memory holds two packed bed digits, one in bits 7-4 and the
other in bits 3-0. It is necessary to test the second bed digit. The
first bed digit would be masked out and the second bed digit would
remain for testing by the following code,

LD A,(DIGITS) GET 2 BCD DIGITS
AND  OFH MASK OUT HIGH ORDER
TEST Q

Since bits 7-4 of the immediate data value were 0, the correspond-
ing bits of the result in the A register can never be one. As bits 3-0
of the immediate data value were ones, however, all bits of the low-
order bed digit “fall-through” to the result. If the data at DIGITS
was 37H, the result after the anp instruction was executed would
be 37TH A OFH = O07H.

The or instruction is used to merge data into a field or to uncon-
ditionally set certain bits within a data byte. If one bed digit was in
the A register in the form 0000]JJJ. and the second was in the B
register in the form KKKKO0000;, a merged result of the form
KKKK]JJJ2 could be obtained by:

OR B MERGE TWO BCD DIGITS

As another example of the ORing function, suppose that the high-
est order, or most significant bit, in a table of ten bytes was to be
unconditionally set. The following code would set the msb of each
of the ten bytes without affecting the remainder of the byte. Note
that an ADD of 80H would not necessarily do the same thing as
adding 80H to values of 80H to FFH would reset the msb.

LD IX, TABLE SET UP INDEX

LD B,10 SET UP COUNT
LOOP LD A (IX) GET BYTE FROM TABLE
OR 80H SET MSB
LD (1X),A STORE BYTE BACK IN TABLE
INC X POINT TO NEXT BYTE
DEC B DECREMENT COUNT

JP NZ,LOOP JUMP IF NOT DONE
DONE <

The exclusive or instruction is not used as frequently as the anp
and or instructions. One use is to “toggle” a bit between a one and
a zero, either for timing or for maintaining a count of two. The fol-
lowing instructions allow a loop starting at LOOP to be reentered
twice only:

16